A non-regular Groebner fan

Preprint English OPEN
Jensen, Anders N. (2005)
  • Related identifiers: doi: 10.1007/s00454-006-1289-0
  • Subject: Mathematics - Combinatorics | 13P10 | Mathematics - Commutative Algebra
    arxiv: Mathematics::Commutative Algebra | Computer Science::Symbolic Computation

The Groebner fan of an ideal $I\subset k[x_1,...,x_n]$, defined by Mora and Robbiano, is a complex of polyhedral cones in $R^n$. The maximal cones of the fan are in bijection with the distinct monomial initial ideals of $I$ as the term order varies. If $I$ is homogeneou... View more
  • References (8)

    [6] Torbj¨orn Granlund et al. GNU multiple precision arithmetic library 4.1.2, December 2002. http://swox.com/gmp/.

    [7] G.-M. Greuel, G. Pfister, and H. Scho¨nemann. Singular 2.0.5. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2004. http://www.singular.uni-kl.de.

    [8] Birkett Huber and Rekha R. Thomas. Computing Gro¨bner fans of toric ideals. Experimental Mathematics, 9(3/4):321-331, 2000.

    [9] Anders Jensen. A Singular script for verifying a Gro¨bner fan computation., 2005. http://home.imf.au.dk/ajensen/papers/singularscript.html.

    [10] Daniel Mall. Gro¨bner fans and projective schemes. Progress in Computer Science and Applied Logic, 15, 1998.

    [11] Teo Mora and Lorenzo Robbiano. The Gro¨bner fan of an ideal. J. Symb. Comput., 6(2/3):183-208, 1988.

    [12] Bernd Sturmfels. Gro¨bner bases and Convex Polytopes, volume 8 of University Lecture Series. American Mathematical Society, 1996.

    [13] Gu¨nter Ziegler. Lectures on Polytopes, volume 152 of GTM. SpringerVerlag, 1994.

  • Metrics
    No metrics available
Share - Bookmark