publication . Article . Preprint . 2010

Homogenization of resonant chiral metamaterials

Andrei Andryieuski; Christoph Menzel; Carsten Rockstuhl; Radu Malureanu; Falk Lederer; Andrei V. Lavrinenko;
Open Access
  • Published: 25 Aug 2010 Journal: Physical Review B, volume 82 (issn: 1098-0121, eissn: 1550-235X, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to photonic crystals likewise prevailing a homogenization. Based on Bloch mode dispersion we introduce an analytical criterion for performing the homogenization and a tool to pred...
Persistent Identifiers
Subjects
arXiv: Physics::Optics
free text keywords: Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Physics - Optics, Dispersion (optics), Optics, business.industry, business, Metamaterial, Physics, Chirality (chemistry), Photonic crystal, Coupling, Strong coupling, Homogenization (chemistry)
41 references, page 1 of 3

1 M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, Opt. Lett. 34, 2501 (2009).

2 E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).

3 A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).

4 M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32, 856 (2007).

5 J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).

6 D. Kwon, P. L. Werner, and D. H. Werner, Opt. Express 16, 11802 (2008).

7 S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, J. Electr. Magn. Wav. and Appl. 17, 695 (2003).

8 J. B. Pendry, Science 306, 1353 (2004).

9 J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).

10 B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, Appl. Phys. Lett. 94, 151112 (2009).

11 S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).

12 M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, J. Phys. Cond. Matt. 21, 292201 (2009).

13 D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).

14 C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, Appl. Phys. Lett. 93, 233106 (2008).

15 E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).

41 references, page 1 of 3
Any information missing or wrong?Report an Issue