A Numerical Approach to Optimal Coherent Quantum LQG Controller Design Using Gradient Descent

Preprint English OPEN
Sichani, Arash Kh.; Vladimirov, Igor G.; Petersen, Ian R.;
(2016)
  • Subject: Mathematics - Optimization and Control | Computer Science - Systems and Control | 81Q93, 81S22, 93E20, 65K10, 90C30, 49M05, 15A60 | Quantum Physics

This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a mean square cost for the fully quantum closed-loop system. The plant... View more
  • References (36)
    36 references, page 1 of 4

    [1] P. A. Absil and K. Kurdyka. On the stable equilibrium points of gradient systems. Syst. Control Lett., 55(7):573-577, 2006.

    [2] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.

    [3] D. S. Bernstein and W. M. Haddad. LQG control with an H∞ performance bound: A Riccati equation approach. IEEE Trans. Automat. Contr., 34(3):293- 305, 1989.

    [4] D. P. Bertsekas. Nonlinear programming. Belmont: Athena Scientific, 1999.

    1 All computations were performed on MATLAB R2012b running on a HP Z220 SFF workstation with Intel Core i7-3770 CPU working at 3.4 GHz and with 8 GB of DDR3 RAM.

    [5] S. C. Edwards and V. P. Belavkin. Optimal Quantum Filtering and Quantum Feedback Control. arXiv:quant-ph/0506018v2, pages 1-14, 2005.

    [6] C. W. Gardiner and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer-Verlag Berlin Heidelberg, 2004.

    [7] H. G. Harno and I. R. Petersen. Synthesis of linear coherent quantum control systems using a differential evolution algorithm. IEEE Trans. Autom. Contr., 60(3):799-805, 2015.

    [8] U. Helmke and J. B. Moore. Optimization and Dynamical Systems. Communications and Control Engineering. Springer London, London, 2008.

    [9] A. S. Holevo. Statistical Structure of Quantum Theory. Lecture Notes in Physics Monographs. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

  • Similar Research Results (1)
  • Metrics
Share - Bookmark