Combinatorial construction of toric residues

Preprint English OPEN
Khetan, Amit; Soprounov, Ivan; (2004)
  • Subject: Mathematics - Combinatorics | 14M25, 52B20 | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Algebraic Geometry

The toric residue is a map depending on n+1 semi-ample divisors on a complete toric variety of dimension n. It appears in a variety of contexts such as sparse polynomial systems, mirror symmetry, and GKZ hypergeometric functions. In this paper we investigate the problem... View more
  • References (19)
    19 references, page 1 of 2

    [1] Ian Anderson, A first course in combinatorial mathematics, Oxford University Press, 1989 (2nd ed.)

    [2] V. Batyrev and D. Cox. On the Hodge structure of projective hypersurfaces in toric varieties, Duke J. Math. 75 (1994), 293-338

    [3] V. Batyrev, E. Materov, Toric Residues and Mirror Symmetry, Moscow Math. J. 2 (2002), no. 3, 435-475.

    [4] E. Cattani, D. Cox, A. Dickenstein, Residues in Toric Varieties, Compositio Math. 108 (1997), no. 1, 35-76.

    [5] E. Cattani, A. Dickenstein, A global view of residues in the torus, J. Pure Appl. Algebra 117/118 (1997), 119-144.

    [6] E. Cattani, A. Dickenstein, Planar Configurations of Lattice Vectors and GKZ-Rational Toric Fourfolds in P6 , J. Alg. Comb. 19 (2004), 47-65.

    [7] E. Cattani, A. Dickenstein, B. Sturmfels, Residues and Resultants, J. Math. Sci. Univ. Tokyo, 5 (1998), 119-148.

    [8] E. Cattani, A. Dickenstein, and B. Sturmfels. Computing multidimensional residues. Algorithms in algebraic geometry and applications (Santander, 1994), 135-164, Progr. Math., 143, Birkha¨user, Basel, 1996.

    [9] E. Cattani, A. Dickenstein, B. Sturmfels, Rational hypergeometric functions, Compositio Math. 128 (2001), 217-240.

    [10] E. Cattani, A. Dickenstein, B. Sturmfels, Binomial Residues, Ann. Inst. Fourier 52 (2002), 687-708.

  • Metrics
    No metrics available
Share - Bookmark