Representations of reductive normal algebraic monoids

Preprint English OPEN
Doty, Stephen (2014)
  • Subject: 20M32 | Mathematics - Representation Theory
    arxiv: Mathematics::Category Theory

The rational representation theory of a reductive normal algebraic monoid (with one-dimensional center) forms a highest weight category, in the sense of Cline, Parshall, and Scott. This is a fundamental fact about the representation theory of reductive normal algebraic monoids. We survey how this result was obtained, and treat some natural examples coming from classical groups.
  • References (13)
    13 references, page 1 of 2

    1. E. Cline, B. Parshall, and L. Scott: Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85-99.

    2. S. Donkin: On Schur algebras and related algebras I, J. Algebra 104 (1986), 310-328.

    3. S. Donkin: Good filtrations of rational modules for reductive groups, Proc. Symposia Pure Math. (Part I) 47 (1987), 69-80.

    4. S. Doty: Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Applied Algebra 123 (1998), 165-199.

    5. S. Doty: Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998), 165-199.

    6. S. Doty and Jun Hu: Schur-Weyl duality for orthogonal groups, Proc. Lond. Math. Soc. (3) 98 (2009), 679-713.

    7. E. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209-270.

    8. D. Ju. Grigor'ev, An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series (Russian), Dokl. Akad. Nauk SSSR 257 (1981), 1040-1044.

    9. M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol: The book of involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998.

    10. M. Putcha: Linear Algebraic Monoids, London Math. Soc. Lecture Notes Series 133, Cambridge Univ. Press, 1988.

  • Metrics
    No metrics available
Share - Bookmark