Fake Galois Actions

Preprint English OPEN
Farrell, Niamh; Ruhstorfer, Lucas;
  • Subject: 20C20, 20C33 | Mathematics - Representation Theory
    arxiv: Mathematics::Group Theory

We prove that for all non-abelian finite simple groups $S$, there exists a fake mth Galois action on IBr$(X)$ with respect to $X \lhd X \rtimes $ Aut$(X)$, where $X$ is the universal covering group of $S$ and $m$ is any non-negative integer coprime to the order of $X$. ... View more
  • References (18)
    18 references, page 1 of 2

    [1] Cabanes, M., and Enguehard, M. Representation theory of finite reductive groups, vol. 1 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2004.

    [2] Cabanes, M., and Spa¨th, B. Equivariant character correspondences and inductive McKay condition for type A. Crelles Journal (2015).

    [3] Carter, R. W. Finite groups of Lie type. Wiley Classics Library. 1993.

    [4] Denoncin, D. Stable basic sets for finite special linear and unitary groups. Adv. Math. 307 (2017).

    [5] Digne, F., Lehrer, G. I., and Michel, J. The characters of the group of rational points of a reductive group with nonconnected centre. J. Reine Angew. Math. 425 (1992), 155-192.

    [6] Digne, F., and Michel, J. Representations of finite groups of Lie type, vol. 21 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.

    [7] Geck, M. Basic sets of Brauer characters of finite groups of Lie type. II. J. London Math. Soc. (2) 47, 2 (1993), 255-268.

    [8] Gorenstein, D., Lyons, R., and Solomon, R. The classification of the finite simple groups. Number 5. Part III. Chapters 1-6, vol. 40 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

    [9] Lehrer, G. I. On the value of characters of semisimple groups over finite fields. Osaka J. Math. 15, 1 (1978), 77-99.

    [10] Malle, G., and Testerman, D. Linear algebraic groups and finite groups of Lie type, vol. 133 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011.

  • Related Organizations (1)
  • Metrics
Share - Bookmark