Wigner Functions on a Lattice

Preprint English OPEN
Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.;
(2000)

The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which ... View more
  • References (13)
    13 references, page 1 of 2

    [1] E. P. Wigner, Phys. Rev. 40, 749 (1932)

    [2] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag New York, 1980)

    [3] O. M. Friesch, I. Marzoli and W. P. Shleich, New Journal of Physics 2, 4.1 (2000)

    [4] K. Vogel and H. Risken, Phys. Rev. A40, 2847 (1989)

    [5] D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Phys. Rev. Lett. 70, 1244 (1993)

    [6] W.K.Wootters, Ann. Phys. (N.Y.) 176, 1 (1987)

    [7] O. Cohendet, Ph. Combe, M. Sirugue and M. Sirugue-Collin, J. Phys. A: Math. Gen. 21, 2875 (1988)

    [8] Ulf Leonhardt, Phys. Rev. Lett. 74, 4101 (1995); Phys. Rev. A 53, 2998 (1996)

    [9] T. Opatrny, D. -G. Welsch, and V. Buzek, Phys. Rev. A 53, 3822 (1996)

    [10] A. M. F. Rivas and A. M. Ozorio de Almeida, Ann. Phys. (N.Y.) 276, 223 (1999)

  • Metrics
Share - Bookmark