publication . Preprint . Other literature type . Article . 2016

Negative stiffness and modulated states in active nematics.

Pragya Srivastava; Prashant Mishra; M. Cristina Marchetti;
Open Access English
  • Published: 28 Jun 2016
Abstract
We examine the dynamics of a compressible active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability pha...
Subjects
free text keywords: Condensed Matter - Soft Condensed Matter, Linear stability, Condensed matter physics, Tricritical point, Non-equilibrium thermodynamics, Classical mechanics, Physics, Phase diagram, Nonlinear system, Critical phenomena, Liquid crystal, Minimal model
Related Organizations
Funded by
NSF| Self-organization of dense active matter
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1305184
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Materials Research
,
NSF| IGERT: Soft Interfaces - Bridging the Divide in Graduate education (iBriD)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1068780
  • Funding stream: Directorate for Education & Human Resources | Division of Graduate Education
46 references, page 1 of 4

1 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013, 85, 1143-1189.

2 R. Voituriez, J. F. Joanny and J. Prost, Phys. Rev. Lett., 2006, 96, 028102.

3 R. Aditi Simha and S. Ramaswamy, Phys. Rev. Lett., 2002, 89, 058101.

4 T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann and Z. Dogic, Nature, 2012, 491, 431-434.

5 L. Giomi, M. J. Bowick, X. Ma and M. C. Marchetti, Phys. Rev. Lett., 2013, 110, 228101.

6 L. Giomi, L. Mahadevan, B. Chakraborty and M. F. Hagan, Nonlinearity, 2012, 25, 2245.

7 S. P. Thampi, R. Golestanian and J. M. Yeomans, EPL (Europhysics Letters), 2014, 105, 18001.

8 R. Voituriez, J. F. Joanny and J. Prost, Europhys. Lett., 2005, 70, 404-410.

9 S. Ramaswamy, R. A. Simha and J. Toner, EPL (Europhysics Letters), 2003, 62, 196.

10 S. Zhou, A. Sokolov, O. D. Lavrentovich and I. S. Aranson, Proc. Nat. Acad. Sci. U.S.A., 2013, 111, 1265-1270.

11 D. Marenduzzo, E. Orlandini, M. E. Cates and J. M. Yeomans, Phys. Rev. E, 2007, 76, 031921.

12 S. P. Thampi, R. Golestanian and J. M. Yeomans, Phys. Rev. Lett., 2013, 111, 118101.

13 L. Giomi, L. Mahadevan, B. Chakraborty and M. F. Hagan, Phys. Rev. Lett., 2011, 106, 218101.

14 T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett., 2006, 97, 268101.

15 A. Ahmadi, M. C. Marchetti and T. B. Liverpool, Phys. Rev. E, 2006, 74, 061913.

46 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue