$C^1$ actions on manifolds by lattices in Lie groups

Preprint English OPEN
Brown, Aaron; Damjanovic, Danijela; Zhang, Zhiyuan;
(2018)
  • Subject: Mathematics - Dynamical Systems
    arxiv: Mathematics::Dynamical Systems

In this paper we study Zimmer's conjecture for $C^1$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of the lattice is larger than the dimension of the manifold, then the action factors th... View more
  • References (37)
    37 references, page 1 of 4

    [1] G.E. Bredon, F. Raymond, R.F. Williams, p-Adic transformation groups, Trans. Amer. Math. Soc. 99 (1961), 488-498.

    [2] A. Brown, D. Fisher, S. Hurtado, Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T), arXiv.

    [3] A. Brown, D. Fisher, S. Hurtado, Zimmer's conjecture for actions of SL(m, Z), arXiv.

    [4] A. Brown, F. Rodriguez Hertz, Z. Wang, Smooth ergodic theory of Zd-actions, arXiv.

    [5] A. Brown, F. Rodriguez Hertz, Z. Wang, Invariant measures and measurable projective factors for actions of higher-rank lattices on manifolds, arXiv.

    [6] M. Burger, N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), 219-280.

    [7] T. de Laat, M. de la Salle, Strong property (T) for higher-rank simple Lie groups, Proc. Lond. Math. Soc. (3) 111(4):936-966, 2015.

    [8] M. de la Salle, Strong property (T) for higher rank lattices, arXiv.

    [9] M. Einsiedler, A. Katok, Rigidity of measures: the high entropy case and non-commuting foliations, Israel J. Math., 148:169-238, 2005. Probability in mathematics.

    [10] B. Farb, P. Shalen, Real-analytic actions of lattices, Invent. Math., 135(2), 1999:273-296.

  • Metrics
Share - Bookmark