# $\mathcal{C}$, $\mathcal{P}$, $\mathcal{T}$ operations and classical point charged particle dynamics

- Published: 20 Mar 2014

- 1
- 2

[1] W. B. Bonnor, A new equation of motion for a radiating charged particle, Proc. R. Soc. Lond. A. 337, 591-598 (1974).

[2] R. C. Davidson, Physics of Nonneutral Plasmas, World Scientific (2001).

[3] P. A. M. Dirac, Classical Theory of Radiating Electrons, Proc. R. Soc. Lond. A 137, 148-169 (1938).

[4] T. Erber, The classical theories of radiation reaction, Fortschritte der Physik 9, 343-392 (1961). [OpenAIRE]

[5] R. Gallego Torrom´e, Geometry of generalized higher order fields and applications to classical linear electrodynamics, arXiv:1207.3791.

[6] R. Gallego Torrom´e, A second order differential equation for point charged particles, arXiv:1207.3627 [math-ph].

[7] T. Katsouleas, Accelerator physics: Electrons hang ten on laser wake Nature (September 2004), 431, 515516.

[8] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford (1962).

[9] J. Larmor, Mathematical and physical papers, vol. 2, p. 444, Cambridge University Press (1929).

[10] W. P. Leemans et al., GeV electron beams from a centimetre-scale accelerator, Nature Physics 418: 696699 (2006).

[11] E. Poisson, An introduction to the Lorentz-Dirac equation, arXiv:gr-qc/9912045.

[12] F. Rohrlich, Classical Charged Particles, Addison-Wesley, Redwood City (1990).

[13] S. Russenschuck, Design of accelerator magnets, CERN, 1211 Geneva 23, Switzerland.

[14] H. Spohn, The critical manifold of the Lorentz-Dirac equation, Europhys. Lett. 50, 287-292 (2000). [OpenAIRE]

[15] H. Spohn, Dynamics of Charged Particles and Their Radiation Field, Cambridge University Press (2004).

- 1
- 2