Constructing co-Higgs bundles on CP^2

Preprint English OPEN
Rayan, Steven;
(2013)
  • Related identifiers: doi: 10.1093/qmath/hau017
  • Subject: Mathematics - Algebraic Geometry | Mathematics - Differential Geometry
    arxiv: Mathematics::Algebraic Geometry | High Energy Physics::Phenomenology | Mathematics::Symplectic Geometry | High Energy Physics::Experiment

On a complex manifold, a co-Higgs bundle is a holomorphic vector bundle with an endomorphism twisted by the tangent bundle. The notion of generalized holomorphic bundle in Hitchin's generalized geometry coincides with that of co-Higgs bundle when the generalized complex... View more
  • References (20)
    20 references, page 1 of 2

    [1] Biswas, I., and Ramanan, S. An in nitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. (2) 49, 2 (1994), 219{231.

    [2] Bohnhorst, G., and Spindler, H. The stability of certain vector bundles on Pn. In Complex Algebraic Varieties (Bayreuth, 1990), vol. 1507 of Lecture Notes in Math. Springer, Berlin, 1992, pp. 39{50.

    [3] Bottacin, F. Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. Ecole Norm. Sup. (4) 28, 4 (1995), 391{433.

    [4] Boucksom, S., Demailly, J.-P., Paun, M., and Peternell, T. The pseudo-e ective cone of a compact Kahler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22, 2 (2013), 201{248.

    [5] Donagi, R. Spectral covers. In Current Topics in Complex Algebraic Geometry (Berkeley, CA, 1992/93), vol. 28 of Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, Cambridge, 1995, pp. 65{86.

    [6] Friedman, R. Algebraic Surfaces and Holomorphic Vector Bundles. Springer Universitext, New York, N.Y., 1998.

    [7] Gualtieri, M. Branes on Poisson varieties. In The Many Facets of Geometry: A Tribute to Nigel Hitchin. OUP, Oxford, 2010, pp. 368{394.

    [8] Gualtieri, M. Generalized complex geometry. Ann. of Math. (2) 174, 1 (2011), 75{123.

    [9] Hitchin, N. J. The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55, 1 (1987), 59{126.

    [10] Hitchin, N. J. Generalized holomorphic bundles and the B- eld action. J. Geom. Phys. 61, 1 (2011), 352{362.

  • Metrics
Share - Bookmark