An example of a vector field with the oriented shadowing property

Preprint English OPEN
Tikhomirov, Sergey;
(2014)
  • Subject: 37C50, 37C10 | Mathematics - Dynamical Systems
    arxiv: High Energy Physics::Theory

We consider shadowing properties for vector fields corresponding to different type of reparametrisations. We give an example of a vector field which has the oriented shadowing properties, but does not have the standard shadowing property.
  • References (18)
    18 references, page 1 of 2

    [1] D.V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill., vol. 2, Kiev, 1970, 39-45.

    [2] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., vol. 470, Springer, Berlin, 1975.

    [3] S. Gan, M. Li, S. Tikhomirov. Oriented shadowing property and Ω-stability for vector fields. preprint

    [4] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.

    [5] M. Komuro, One-parameter flows with the pseudo orbit tracing property, Monat. Math. 98 (1984), 219-253.

    [6] K. Lee, K. Sakai, Structural stability of vector fields with shadowing, J. Differential Equations, 232 (2007), 303-313.

    [7] K. J. Palmer, Shadowing in Dynamical Systems: Theory and Applications, Kluwer, 2000.

    [8] K. J. Palmer, S. Yu. Pilyugin, S. B. Tikhomirov, Lipschitz shadowing and structural stability of flows, J. Differential Equations, 252 (2012), 1723-1747.

    [9] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., vol. 1706, Springer, 1999.

    [10] S. Yu. Pilyugin, Introduction to Structurally Stable Systems of Differential Equations, Birkhauser-Verlag, Basel, 1992.

  • Related Organizations (1)
  • Metrics
Share - Bookmark