publication . Preprint . Article . 2013

Power-law Decay and the Ergodic–Nonergodic Transition in Simple Fluids

Paul Spyridis; Gene F. Mazenko;
Open Access English
  • Published: 09 Feb 2013
Abstract
It is well known that mode coupling theory (MCT) leads to a two step power-law time decay in dense simple fluids. We show that much of the mathematical machinery used in the MCT analysis can be taken over to the analysis of the systematic theory developed in the Fundamental Theory of Statistical Particle Dynamics (arXiv:0905.4904). We show how the power-law exponents can be computed in the second-order approximation where we treat hard-sphere fluids with statics described by the Percus-Yevick solution.
Subjects
arXiv: Condensed Matter::Soft Condensed Matter
free text keywords: Condensed Matter - Statistical Mechanics, Mathematical Physics, Statistical and Nonlinear Physics

1. Gene F. Mazenko. Fundamental theory of statistical particle dynamics. Phys. Rev. E, 81(6):061102, Jun 2010. [OpenAIRE]

2. A. Andreanov, G. Biroli, and J.-P. Bouchaud. Mode coupling as a landau theory of the glass transition. EPL (Europhysics Letters), 88(1):16001, 2009. [OpenAIRE]

3. W. Kob. Course 5: Supercooled liquids, the glass transition, and computer simulations. In Jean-Louis Barrat, Mikhail Feigelman, Jorge Kurchan, and Jean Dalibard, editors, Slow Relaxations and nonequilibrium dynamics in condensed matter, volume 77 of Les Houches, pages 199-212. Springer Berlin / Heidelberg, 2003.

4. Gene F. Mazenko. Smoluchowski dynamics and the ergodic-nonergodic transition. Phys. Rev. E, 83(4):041125, Apr 2011.

5. Gene F. Mazenko, David D. McCowan, and Paul Spyridis. Kinetic equations governing smoluchowski dynamics in equilibrium. Phys. Rev. E, 85:051105, May 2012.

6. Ludovic Berthier and Gilles Tarjus. Critical test of the mode-coupling theory of the glass transition. Phys. Rev. E, 82(3):031502, Sep 2010.

7. Shankar P. Das and Gene F. Mazenko. Field theoretic formulation of kinetic theory: Basic development. Journal of Statistical Physics, 149:643-675, 2012. [OpenAIRE]

8. W. Gotze. Properties of the glass instability treated within a mode coupling theory. Zeitschrift fur Physik B Condensed Matter, 60:195-203, 1985. 10.1007/BF01304439.

9. David R. Reichman and Patrick Charbonneau. Mode-coupling theory. Journal of Statistical Mechanics: Theory and Experiment, 2005(05):P05013, 2005.

10. U. Bengtzelius, W. Gotze, and A. Sjolander. Dynamics of supercooled liquids and the glass transition. Journal of Physics C: Solid State Physics, 17(33):5915, 1984. [OpenAIRE]

11. Bongsoo Kim and Gene F. Mazenko. Mode coupling, universality, and the glass transition. Phys. Rev. A, 45(4):2393-2398, Feb 1992. [OpenAIRE]

12. W. Gotze and L. Sjogren. General properties of certain non-linear integro-differential equations. Journal of Mathematical Analysis and Applications, 195(1):230 - 250, 1995. [OpenAIRE]

13. J. L. Barrat, W. Gotze, and A. Latz. The liquid-glass transition of the hard-sphere system. Journal of Physics: Condensed Matter, 1(39):7163, 1989. [OpenAIRE]

14. G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett., 102(8):085703, Feb 2009.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue