From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1jets

Related identifiers: doi: 10.1016/j.geomphys.2012.09.002 
Subject: Mathematical Physics  Mathematics  Differential Geometryarxiv: Mathematics::Algebraic Topology  Mathematics::Category Theory

References
(23)
[1] P. Aschieri, L. Cantini, B. Jurˇco, Nonabelian Bundle Gerbes, their Differential Geometry and Gauge Theory, Commun.Math.Phys. 254 (2005) 367
[2] M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The Geometry of the Master Equation and Topological Quantum Field Theory, Int. J. Mod. Phys. A12 (1997) 14051429.
[3] I˙. Ak¸ca, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (2002) 435
[4] Z. Arvasi, T.S. Kuzpinari, E.O¨ . Uslu, Three Crossed Modules, arXiv:0812.4685 [math.CT].
[5] J. C. Baez, A. S. Crans, HigherDimensional Algebra VI: Lie 2Algebras, Theor. Appl. Categor. 12 (2004) 492528.
[6] P. Carrasco, A. M. Cegarra, Group theoretic algebraic models for homotopy types, J. Pure Appl. Algebra 75(1991) 195235.
[7] D. Conduch´e, Modules crois´es g´eneralis´es de longeur 2, J. Pure Appl. Algebra 34 (1984) 155178.
[8] E. Curtis, Simplicial Homotopy Theory, Advances in Math. 6 (1971) 107209
[9] J. L. Dupont, Curvature and characteristic classes, LNM 640, Springer 1978
[10] J. Duskin, Simplicial matrices and the nerves of weak ncategories I: nerves of bicategories, Theor. Appl. Categor. 9 (2002) 198308.

Similar Research Results
(8)

Metrics
No metrics available

 Download from


Cite this publication