An asymptotic formula of the divergent bilateral basic hypergeometric series

Preprint English OPEN
Morita, Takeshi (2012)
  • Subject: Mathematics - Classical Analysis and ODEs | 33D15, 34M40, 39A13

We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\psi_0 (a;-;q,\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\to 1-0$ of our asymptotic formula.
  • References (16)
    16 references, page 1 of 2

    [1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Math. Appl. 71, Cambridge Univ. Press, Cambridge, 1999.

    [2] G. D. Birkhoff, The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Am. Acad. Arts and Sciences, 49 (1914), 521 − 568.

    [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed, Cambridge, 2004.

    [4] G. H. Hardy, Ramanujan, Cambridge University Press, Cambridge; reprinted by Chelsea, New York, 1978.

    [5] Heine. E. Untersuchungen u¨ber die Reihe..., J. reine angew. Math. 34, 285-328.

    [6] M. E. Horn, Bilateral binomial theorem, SIAM Problem 03-001 (2003).

    [7] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445-461.

    [8] T. Morita, A connection formula of the Hahn-Exton q-Bessel Function, SIGMA,7 (2011), 115, 11pp.

    [9] T. Morita, A connection formula of the q-confluent hypergeometric function, arXiv:1105.5770.

    [10] T. Morita, On local solutions of the Ramanujan equation and their connection formulae, arXiv:1203.3404.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark