publication . Article . Preprint . 2019

The Rectangular Representation of the Double Affine Hecke Algebra via Elliptic Schur–Weyl Duality

Jordan, David; Vazirani, Monica;
Open Access
  • Published: 21 Feb 2019 Journal: International Mathematics Research Notices (issn: 1073-7928, eissn: 1687-0247, Copyright policy)
  • Publisher: Oxford University Press (OUP)
  • Country: United Kingdom
Given a module $M$ for the algebra $\mathcal{D}_{\mathtt{q}}(G)$ of quantum differential operators on $G$, and a positive integer $n$, we may equip the space $F_n^G(M)$ of invariant tensors in $V^{\otimes n}\otimes M$, with an action of the double affine Hecke algebra of type $A_{n-1}$. Here $G= SL_N$ or $GL_N$, and $V$ is the $N$-dimensional defining representation of $G$. In this paper we take $M$ to be the basic $\mathcal{D}_{\mathtt{q}}(G)$-module, i.e. the quantized coordinate algebra $M= \mathcal{O}_{\mathtt{q}}(G)$. We describe a weight basis for $F_n^G(\mathcal{O}_{\mathtt{q}}(G))$ combinatorially in terms of walks in the type $A$ weight lattice, and sta...
arXiv: Mathematics::Representation Theory
free text keywords: General Mathematics, Pure mathematics, Double affine Hecke algebra, Schur–Weyl duality, Mathematics, Mathematical analysis, Mathematics - Representation Theory, Mathematics - Combinatorics, Mathematics - Quantum Algebra
Funded by
EC| QuantGeomLangTFT
The Quantum Geometric Langlands Topological Field Theory
  • Funder: European Commission (EC)
  • Project Code: 637618
  • Funding stream: H2020 | ERC | ERC-STG
NSF| Mathematical Sciences Research Institute (MSRI)
  • Funder: National Science Foundation (NSF)
  • Project Code: 1440140
17 references, page 1 of 2

Per(T ab(u)) 16 DAVID JORDAN AND MONICA VAZIRANI We can associate to SLn the quotient Sn = Sbn/hπni. Then we can think of the image, π, of π as the Dynkin diagram automorphism or the generator of the cyclic group ΛslN /Q.

[1] Tomoyuki Arakawa and Takeshi Suzuki. Duality between sln(C) and the degenerate affine Hecke algebra. J. Algebra, 209(1):288-304, 1998.

[2] David Ben-Zvi, Adrien Brochier, and David Jordan. Integrating quantum groups over surfaces. arXiv:math.QA/1501.04652, 2015.

[3] David Ben-Zvi, Adrien Brochier, and David Jordan. Quantum character varieties and braided module categories. arXiv:math.QA/1606.04769, 2016.

[4] Joan S. Birman. On braid groups. Comm. Pure Appl. Math., 22:41-72, 1969.

[5] Adrien Brochier and David Jordan. Fourier transform for quantum D-modules via the punctured torus mapping class group. Quantum Topol., 8(2):361-379, 2017.

[6] Damien Calaque, Benjamin Enriquez, and Pavel Etingof. Universal KZB equations: the elliptic case. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pages 165-266. Birkh¨auser Boston, Inc., Boston, MA, 2009.

[7] Ivan Cherednik. Double affine Hecke algebras and difference Fourier transforms. Invent. Math., 152(2):213-303, 2003.

[8] Ivan Cherednik. Double affine Hecke algebras, volume 319 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005. [OpenAIRE]

[9] David Jordan. Quantum D-modules, elliptic braid groups, and double affine Hecke algebras. Int. Math. Res. Not. IMRN, (11):2081-2105, 2009.

[10] David Jordan and Noah White. The center of the reflection equation algebra via quantum minors. In preparation.

[11] Anatoli Klimyk and Konrad Schmu¨dgen. Quantum groups and their representations. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997. [OpenAIRE]

[12] Rosa Orellana and Arun Ram. Affine braids, Markov traces and the category O. In Algebraic groups and homogeneous spaces, volume 19 of Tata Inst. Fund. Res. Stud. Math., pages 423-473. Tata Inst. Fund. Res., Mumbai, 2007.

[13] Arun Ram. Affine Hecke algebras and generalized standard Young tableaux. J. Algebra, 260(1):367- 415, 2003. Special issue celebrating the 80th birthday of Robert Steinberg.

[14] G. P. Scott. Braid groups and the group of homeomorphisms of a surface. Proc. Cambridge Philos. Soc., 68:605-617, 1970.

17 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue