publication . Other literature type . Article . Preprint . 2007


Aquino L. Espíndola; Aquino L. Espíndola; Alexandre Souto Martinez; Marcelo Alves Pereira;
Open Access
  • Published: 27 Aug 2007
  • Publisher: World Scientific Pub Co Pte Lt
The spatial Prisoner's Dilemma is a prototype model to show the emergence of cooperation in very competitive environments. It considers players, at site of lattices, that can either cooperate or defect when playing the Prisoner's Dilemma with other z players. This model presents a rich phase diagram. Here we consider players in cells of one-dimensional cellular automata. Each player interacts with other z players. This geometry allows us to vary, in a simple manner, the number of neighbors ranging from one up to the lattice size, including self-interaction. This approach has multiple advantages. It is simple to implement numerically and we are able to retrieve a...
arXiv: Computer Science::Computer Science and Game Theory
free text keywords: Mathematical Physics, Computational Theory and Mathematics, General Physics and Astronomy, Statistical and Nonlinear Physics, Computer Science Applications, Physics - Computational Physics, Physics - Physics and Society, Prisoner's dilemma, Convergence (routing), Automaton, Dilemma, Evolutionary dynamics, Cellular automaton, Mathematics, Game theory, Visualization, Artificial intelligence, business.industry, business
22 references, page 1 of 2

1. J. Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, New York, 1947).

2. M. Dresher, The Mathematics of Games of Strategy: Theory and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1961).

3. W. Poundstone, Prisoner's Dilemma (Doubleday, New York, 1992).

4. D. Stauffer Physica A 336, 1-5 (2004).

5. J. P. Bouchaud Physica A 313, 238-251 (2002).

6. C. Anteneodo, C. Tsallis, A. S. Martinez Europhys. Lett. 59 5, 635-641 (2002).

7. P. E. Turner, L. Chao Nature 398, 441-443 (1999).

8. R. Axelrod and W. D. Hamilton, Science 211, 1390-1396 (1981).

9. R. Axelrod, The evolution of cooperation (Basic Books, New York, 1984).

10. M. A. Nowak and R.M. May, Nature 359, 826-829 (1992).

11. O. Dur´an and R. Mulet, Physica D 208, 257-265 (2005).

12. E. Lieberman, C. Hauert, M. A. Nowak, Nature 433, 312-316 (2005).

13. Z. Wu, J. Guan, X. Xu, Y. Wang, Physica A 379, 672-680 (2007).

14. G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901 (2001).

15. M. H. Vainstein, A. T. C. Silva, J. J. Arenzon, Journal Of Theoretical Biology 244 (4), 722-728 (2007)

22 references, page 1 of 2
Any information missing or wrong?Report an Issue