3D Oscillator and Coulomb Systems reduced from Kahler spaces

Preprint English OPEN
Nersessian, Armen ; Yeranyan, Armen (2003)
  • Related identifiers: doi: 10.1088/0305-4470/37/7/020
  • Subject: Mathematical Physics | Nonlinear Sciences - Exactly Solvable and Integrable Systems | High Energy Physics - Theory | Quantum Physics
    arxiv: Mathematics::Symplectic Geometry

We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is non-Kahler one. Finally, we extend these results to the family of Kahler spaces with conic singularities.
  • References (11)
    11 references, page 1 of 2

    [2] P. W. Higgs, J. Phys. A: Math. Gen. 12, 309 (1979); H. I. Leemon, J. Phys. A: Math. Gen. 12, 489 (1979)

    [3] S. Bellucci, A. Nersessian, Phys. Rev. D67, 065013 (2003);

    [4] T. Levi-Civita, Opere Mathematiche, 2, 411 (1906); P. Kustaanheimo, E. Stiefel, J. Reine Angew Math., 218, 204 (1965); L. S. Davtyan, L. G. Mardoyan, G. S.Pogosyan, A. N. Sissakian and V. M. Ter-Antonyan, J. Phys. A20, 6121 (1987)

    [5] A. Nersessian, V. Ter-Antonian, M. M. Tsulaia, Mod. Phys. Lett. A 11, 1605 (1996);

    [6] D. Zwanziger, Phys. Rev. 176, 1480 (1968); H. V. McIntosh, A. Cisneros, J. Math. Phys. 11, 896 (1970);

    [7] T. Iwai, J. Geom. Phys. 7, 507 (1990); L. G. Mardoyan, A. N. Sissakian, V. M. Ter-Antonyan, Phys. Atom. Nucl. 61, 1746 (1998)

    [8] V. M. Ter-Antonyan, Dyon-oscillator duality, quant-ph/0003106

    [9] G. W. Gibbons, N. S. Manton, Nucl. Phys. B274, 183 (1986); see also L. G. Feher and P. A. Horvathy, Phys. Lett. B 182, 183 (1987);

    [10] T. Iwai, Y. Uwano, J. Math. Phys. 27, 1523 (1986); I. Mladenov, V. Tsanov, J. Phys. A20, 5865 (1987); A. Nersessian, V. Ter-Antonyan, Mod. Phys. Lett. A9, 2431 (1994); A10, 2633 (1995); L. G. Mardoyan, A. N. Sissakian and V. M. Ter-Antonyan, Int. J. Mod. Phys. A12, 237 (1997); L. G. Mardoyan, L. S. Petrosyan and H. Sarkisyan, Phys. Rev. A68, 014103 (2003); L. Mardoyan, A. Nersessian and M. Petrosyan, quant-ph/0305027

    [11] A. Nersessian, G. Pogosyan, Phys. Rev. A63, 020103(R) (2001);

  • Metrics
    No metrics available
Share - Bookmark