publication . Preprint . 2019

Numerical Methods for Biomembranes: conforming subdivision methods versus non-conforming PL methods

Chen, Jingmin; Yu, Thomas; Brogan, Patrick; Kusner, Robert; Yang, Yilin; Zigerelli, Andrew;
Open Access English
  • Published: 28 Jan 2019
Abstract
Comment: 35 pages, 17 figures
Subjects
free text keywords: Mathematics - Numerical Analysis
Funded by
NSF| Institute for Computational and Experimental Research in Mathematics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1439786
,
NSF| Topics in Geometric and Multiscale Numerical Methods
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1115915
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
,
NSF| Compatible and Nearly Compatible Finite Element Discretizations: Algorithms, Analysis and Applications
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0512673
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
,
NSF| Mathematical Sciences Research Institute (MSRI)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1440140
,
NSF| Multiscale Modeling and Approximation in Novel Geometric and Nonlinear Settings
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0915068
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
Download from
61 references, page 1 of 5

[2] J. W. Barrett, H. Garcke, and R. Nurnberg. Finite element approximation for the dynamics of asymmetric uidic biomembranes. Math. Comp., 86(305):1037{1069, 2017. [OpenAIRE]

[3] M. Bauer and E. Kuwert. Existence of minimizing Willmore surfaces of prescribed genus. International Mathematics Research Notices, 2003(10):553{576, 2003.

[4] T. Baumgart, S. T. Hess, and W. W. Webb. Imaging coexisting uid domains in biomembrane models coupling curvature and line tension. Nature, 425:821{824, Oct 2003.

[5] L. Bers. Riemann Surfaces. Courant Institute of Mathematical Sciences, New York University, New York, 1958.

[6] A. I. Bobenko. A conformal energy for simplicial surfaces. In Combinatorial and computational geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages 135{145. Cambridge Univ. Press, Cambridge, 2005.

[7] A. I. Bobenko and P. Schroder. Discrete Willmore ow. In In Eurographics Symposium on Geometry Processing, pages 101{110, 2005. [OpenAIRE]

[8] A. Bonito, R. H. Nochetto, and M. S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229(9):3171{3188, 2010.

[9] K. A. Brakke. The Surface Evolver. Experimental Mathematics, 1(2):141{165, 1992. [OpenAIRE]

[10] K. A. Brakke. Surface Evolver manual version 2.70. Available at http://facstaff.susqu.edu/brakke/evolver/ downloads/manual270.pdf (2018/04/20), August 2013.

[11] J. P. Brogan, Y. Yang, and T. P.-Y. Yu. Numerical methods for biomembranes based on piecewise linear surfaces. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, and I. S. Pop, editors, Numerical Mathematics and Advanced Applications: ENUMATH 2017, volume 126 of Lecture Notes in Computational Science and Engineering. Springer Nature Switzerland AG, 2018.

[12] P. B. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26(1):61{76, 1970. [OpenAIRE]

[13] J. Chen, S. Grundel, and T. P.-Y. Yu. A exible C2 subdivision scheme on the sphere: with application to biomembrane modelling. SIAM Journal on Applied Algebra and Geometry, 1(1):459{483, 2017.

[14] G. R. Cowper. Gaussian quadrature formulas for triangles. International Journal for Numerical Methods in Engineering, 7(3):405{408, 1973. [OpenAIRE]

[15] F. E. Curtis, T. Mitchell, and M. L. Overton. A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization pro les. Optimization Methods and Software, 32(1):148{ 181, 2017.

[16] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial di erential equations and mean curvature ow. Acta Numer., 14:139{232, 2005. [OpenAIRE]

61 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue