Profit Driven Decision Trees for Churn Prediction

Article, Preprint English OPEN
Baesens, Bart; vanden Broucke, Seppe; Höppner, Sebastiaan; Verdonck, Tim; Stripling, Eugen;
(2017)
  • Publisher: Elsevier
  • Subject: Statistics - Applications | Statistics - Machine Learning | Computer Science - Learning

Customer retention campaigns increasingly rely on predictive models to detect potential churners in a vast customer base. From the perspective of machine learning, the task of predicting customer churn can be presented as a binary classification problem. Using data on h... View more
  • References (16)
    16 references, page 1 of 2

    Athanassopoulos, A. D., 2000. Customer satisfaction cues to support market segmentation and explain switching behavior. Journal of business research 47 (3), 191{207.

    Bahnsen, A. C., Aouada, D., Ottersten, B., 2015a. Example-dependent cost-sensitive decision trees. Expert Systems with Applications 42 (19), 6609{6619.

    Bahnsen, A. C., Aouada, D., Ottersten, B., 2015b. A novel cost-sensitive framework for customer churn predictive modeling. Decision Analytics 2 (1), 1{15.

    Bravo, C., vanden Broucke, S., Verbraken, T., 2015. EMP: Expected Maximum Pro t Classi - cation Performance Measure. R package version 2.0.1.

    Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., 1984. Classi cation and regression trees. CRC press.

    Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics 15 (3), 651{674.

    Koza, J. R., 1992. Genetic Programming: On the programming of computers by means of natural selection. MIT press, Cambridge.

    Quilan, J. R., 1993. C4.5: Programs for machine learning. Morgan Kaufmann Publichers, San Mateo.

    Rechenberg, I., 1973. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart.

    Stripling, E., vanden Broucke, S., Antonio, K., Baesens, B., Snoeck, M., 2015. Pro t maximizing logistic regression modeling for customer churn prediction. IEEE International Conference on Data Science and Advanced Analytics (DSAA' 2015). Paris (France), 19-21 October 2015 (pp. 1-10). Paris, France: IEEE.

  • Related Organizations (7)
  • Metrics
Share - Bookmark