publication . Preprint . 2018

Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

Rios, Gonzalo; Tobar, Felipe;
Open Access English
  • Published: 19 Mar 2018
Comment: Accepted at IEEE IJCNN
free text keywords: Statistics - Machine Learning, Computer Science - Learning
Related Organizations
Download from
28 references, page 1 of 2

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT, 2006.

[2] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for regression,” in Proc. of NIPS, pp. 514-520. 1996.

[3] L. Csato´, E. Fokoue´, M. Opper, B. Schottky, and Ole W., “Efficient approaches to Gaussian process classification,” in Proc. of NIPS, pp. 251-257. 2000.

[4] I. Murray, David M., and R. P. Adams, “The Gaussian process density sampler,” in Proc. of NIPS, pp. 9-16. 2009.

[5] F. Tobar, T. D. Bui, and R. E. Turner, “Learning stationary time series using Gaussian processes with nonparametric kernels,” in Proc. of NIPS, pp. 3501-3509. 2015.

[6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient learning in robotics and control,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423, 2015.

[7] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan 2016.

[8] A. B. Chan and D. Dong, “Generalized Gaussian process models,” in Proc. of CVPR, 2011, pp. 2681-2688.

[9] E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped Gaussian processes,” NIPS, vol. 16, pp. 337-344, 2004.

[10] T. Tao, An introduction to measure theory, vol. 126, American Mathematical Soc., 2011.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT, 2016.

[12] S. J. Wright and J. Nocedal, “Numerical optimization,” Springer Science, vol. 35, no. 67-68, pp. 7, 1999.

[13] M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” The computer journal, vol. 7, no. 2, pp. 155-162, 1964.

[14] J. Goodman and J. Weare, “Ensemble samplers with affine invariance,” Communications in applied mathematics and computational science, vol. 5, no. 1, pp. 65-80, 2010.

[15] P. M. Pardalos, A. Migdalas, and R. E. Burkard, Combinatorial and global optimization, World Scientific, 2002.

28 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue