Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

Preprint English OPEN
Rios, Gonzalo; Tobar, Felipe;
  • Subject: Statistics - Machine Learning | Computer Science - Learning

Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with co... View more
  • References (28)
    28 references, page 1 of 3

    [1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT, 2006.

    [2] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for regression,” in Proc. of NIPS, pp. 514-520. 1996.

    [3] L. Csato´, E. Fokoue´, M. Opper, B. Schottky, and Ole W., “Efficient approaches to Gaussian process classification,” in Proc. of NIPS, pp. 251-257. 2000.

    [4] I. Murray, David M., and R. P. Adams, “The Gaussian process density sampler,” in Proc. of NIPS, pp. 9-16. 2009.

    [5] F. Tobar, T. D. Bui, and R. E. Turner, “Learning stationary time series using Gaussian processes with nonparametric kernels,” in Proc. of NIPS, pp. 3501-3509. 2015.

    [6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient learning in robotics and control,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423, 2015.

    [7] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan 2016.

    [8] A. B. Chan and D. Dong, “Generalized Gaussian process models,” in Proc. of CVPR, 2011, pp. 2681-2688.

    [9] E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped Gaussian processes,” NIPS, vol. 16, pp. 337-344, 2004.

    [10] T. Tao, An introduction to measure theory, vol. 126, American Mathematical Soc., 2011.

  • Metrics
Share - Bookmark