Explicit field realizations of W algebras

Preprint English OPEN
Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong;
(2009)

The fact that certain non-linear $W_{2,s}$ algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize $W_{2,s}$ algebras from linear $W_{1,2,s}$ algebras. In this paper, we first construct the explicit field realizations of linea... View more
  • References (47)
    47 references, page 1 of 5

    [1] A.B. Zamolodchikov, Theor. Math. Phys. 65 (1985) 1205; V.A. Fateev and A.B. Zamolodchikov, Nucl. Phys. B 280 (1987) 644.

    [2] P. Bouwknegt and K. Schoutens, Phys. Rept. 223 (1993) 183, arXiv:hep-th/9210010.

    [3] J. de Boer and T. Tjin, Commun. Math. Phys. 160 (1994) 317, arXiv:hep-th/9302006.

    [4] A. Deckmyn, R. Siebelink, W. Troost and A. Sevrin, Phys. Rev. D 51 (1995) 6970, arXiv:hep-th/9411221.

    [5] A. Boresch, K. Landsteiner and W. Lerche, Nucl. Phys. B 436 (1995) 609, arXiv:hep-th/9408033.

    [6] J.O. Madsen and E. Ragoucy, Commun. Math. Phys. 185 (1997) 509, arXiv:hep-th/9503042; J.O. Madsen and E. Ragoucy, Nucl. Phys. B 429 (1994) 277, arXiv:hep-th/9403012.

    [7] C.N. Pope, Lectures on W algebras and W gravity, arXiv:hep-th/9112076.

    [8] Bergshoeff, Phys. Lett. B 243 (1990) 350.

    [9] E. Bergshoeff, J. de Boer, M. de Roo and T. Tjin, Nucl. Phys. B 420 (1994) 379, arXiv:hep-th/9312185.

    [10] C.N. Pope, Phys. Lett. B 269 (1991) 287.

  • Related Organizations (4)
  • Metrics
Share - Bookmark