Adaptive ACMS: A robust localized Approximated Component Mode Synthesis Method

Preprint English OPEN
Madureira, Alexandre L.; Sarkis, Marcus;
  • Subject: Mathematics - Numerical Analysis

We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\infty$ coefficients. The methods are of Galerkin type and follows the Variational Multiscale and L... View more
  • References (71)
    71 references, page 1 of 8

    [1] Rodolfo Araya, Christopher Harder, Diego Paredes, and Fr´ed´eric Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3505-3531, DOI 10.1137/120888223. MR3143841

    [2] Ivo Babuˇska, Gabriel Caloz, and John E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4, 945-981. MR1286212 (95g:65146)

    [3] Ivo Babuska and Robert Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul. 9 (2011), no. 1, 373-406, DOI 10.1137/100791051. MR2801210

    [4] L. Beira˜o da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Adaptive selection of primal constraints for isogeometric BDDC deluxe preconditioners, SIAM J. Sci. Comput. 39 (2017), no. 1, A281-A302, DOI 10.1137/15M1054675. MR3612901

    [5] Petter E. Bjørstad and Olof B. Widlund, Solving elliptic problems on regions partitioned into substructures, Elliptic problem solvers, II (Monterey, Calif., 1983), Academic Press, Orlando, FL, 1984, pp. 245-255. MR764237

    [6] F. Bourquin, Component mode synthesis and eigenvalues of second order operators: discretization and algorithm, RAIRO Mod´el. Math. Anal. Num´er. 26 (1992), no. 3, 385-423, DOI 10.1051/m2an/1992260303851 (English, with French summary). MR1160133

    [7] Fr´ed´eric Bourquin, Analysis and comparison of several component mode synthesis methods on onedimensional domains, Numer. Math. 58 (1990), no. 1, 11-33, DOI 10.1007/BF01385608. MR1069651

    [8] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103-134, DOI 10.2307/2008084. MR842125

    [9] Juan G. Calvo and Olof B. Widlund, An adaptive choice of primal constraints for BDDC domain decomposition algorithms, Electron. Trans. Numer. Anal. 45 (2016), 524-544. MR3582898

    [10] C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp. 79 (2010), no. 272, 1915-1955, DOI 10.1090/S0025-5718-2010- 02372-5. MR2684351

  • Metrics
Share - Bookmark