Scikit-learn: Machine Learning in Python

Article, Preprint English OPEN
Pedregosa, Fabian ; Varoquaux, Gaël ; Gramfort, Alexandre ; Michel, Vincent ; Thirion, Bertrand ; Grisel, Olivier ; Blondel, Mathieu ; Müller, Andreas ; Nothman, Joel ; Louppe, Gilles ; Prettenhofer, Peter ; Weiss, Ron ; Dubourg, Vincent ; Vanderplas, Jake ; Passos, Alexandre ; Cournapeau, David ; Brucher, Matthieu ; Perrot, Matthieu ; Duchesnay, Édouard (2012)
  • Subject: : Computer science [Engineering, computing & technology] | Computer Science - Mathematical Software | : Sciences informatiques [Ingénierie, informatique & technologie] | Computer Science - Learning

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from Peer reviewed
  • References (16)
    16 references, page 1 of 2

    D. Albanese, G. Merler, S.and Jurman, and R. Visintainer. MLPy: high-performance Python package for predictive modeling. In NIPS, MLOSS workshop, 2008.

    C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines., 2001.

    P.F. Dubois, editor. Python: batteries included, volume 9 of Computing in Science & Engineering. IEEE/AIP, May 2007.

    R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research, 9:1871-1874, 2008.

    J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

    I Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge, 2004.

    M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby, and S. Pollmann. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1):37-53, 2009.

    T. Hastie and B. Efron. Least Angle Regression, Lasso and Forward Stagewise., 2004.

    V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B. Thirion. A supervised clustering approach for fMRI-based inference of brain states. Patt Rec, page epub ahead of print, April 2011. doi: 10.1016/j.patcog.2011.04.006.

    K.J. Milmann and M. Avaizis, editors. Scientific Python, volume 11 of Computing in Science & Engineering. IEEE/AIP, March 2011.

  • Metrics
    No metrics available
Share - Bookmark