Unification of field theory and maximum entropy methods for learning probability densities

Preprint English OPEN
Kinney, Justin B.;
(2014)
  • Related identifiers: doi: 10.1103/PhysRevE.92.032107
  • Subject: Physics - Data Analysis, Statistics and Probability | Statistics - Machine Learning | Quantitative Biology - Quantitative Methods | Computer Science - Learning

The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy esti... View more
  • References (2)

    ∗ Email correspondence to jkinney@cshl.edu [1] J. B. Kinney, Phys. Rev. E 90, 011301(R) (2014). [2] W. Bialek, C. G. Callan, and S. P. Strong, Phys. Rev. Lett. 77, 4693 (1996). [3] I. Nemenman and W. Bialek, Phys. Rev. E 65, 026137 (2002). [4] D. Ormoneit and H. White, Economet. Rev. 18, 127 (1999). [5] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction (Springer, 1990). [6] J. Skilling, AIP Conf. Proc. 954, 39 (2007). [7] L. R. Mead and N. Papanicolaou, J. Math. Phys. 25, 2404 (1984). [8] S. Boyd and L. Vandenberghe, Convex optimization (Cambridge University Press, 2009). [9] P. P. B. Eggermont and V. N. LaRiccia, Maximum Penalized Likelihood Estimation: Volume 1: Density Estimation

    (Springer, 2001). [10] B. W. Silverman, Ann. Stat. 10, 795 (1982).

  • Related Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark