## Unification of field theory and maximum entropy methods for learning probability densities

*Kinney, Justin B.*;

Related identifiers: doi: 10.1103/PhysRevE.92.032107 - Subject: Physics - Data Analysis, Statistics and Probability | Statistics - Machine Learning | Quantitative Biology - Quantitative Methods | Computer Science - Learning

- References (2)
∗ Email correspondence to jkinney@cshl.edu [1] J. B. Kinney, Phys. Rev. E 90, 011301(R) (2014). [2] W. Bialek, C. G. Callan, and S. P. Strong, Phys. Rev. Lett. 77, 4693 (1996). [3] I. Nemenman and W. Bialek, Phys. Rev. E 65, 026137 (2002). [4] D. Ormoneit and H. White, Economet. Rev. 18, 127 (1999). [5] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction (Springer, 1990). [6] J. Skilling, AIP Conf. Proc. 954, 39 (2007). [7] L. R. Mead and N. Papanicolaou, J. Math. Phys. 25, 2404 (1984). [8] S. Boyd and L. Vandenberghe, Convex optimization (Cambridge University Press, 2009). [9] P. P. B. Eggermont and V. N. LaRiccia, Maximum Penalized Likelihood Estimation: Volume 1: Density Estimation

(Springer, 2001). [10] B. W. Silverman, Ann. Stat. 10, 795 (1982).

- Related Research Results (1)
- Metrics No metrics available

- Download from

- Cite this publication