18 references, page 1 of 2 [1] L. V. Kantorovich. On the Translocation of Masses, Dokl. Akad. Nauk SSSR, 37, No. 7-8, 227-229 (1942). English translation: Journal of Mathematical Sciences, 3-2006, Volume 133, Issue 4, pp 1381-1382.

[2] V. G. Mazy´a. Sobolev spaces, Izdat. Leningrad. Univ., Leningrad (1985). English translation: Springer-Verlag, Berlin, (1985).

[3] M. Gromov. Metric Structure for Riemannian and NonRiemannian Spaces. Birkhouser (1998).

[4] A. Vershik. The universal Uryson space, Gromov's metric triples, and random metrics on the series of natural numbers. Uspekhi Mat. Nauk 53, No.5, 57-64 (1998). English translation: Russian Math. Surveys 53, No.5, 921-928 (1998).

[5] A. Vershik. Classification of measurable functions of several arguments, and invariantly distributed random matrices (in Russian). Funkts. Anal. Prilozh. 36, no.2, 12-28 (2002). English translation: Funct. Anal. Appl. 36, no.2, 93-105 (2002).

[6] R. A. Adams, J. J. .F Fournier. Sobolev spaces. Academic press, v. 140 (2003).

[7] A. Vershik. Three lectures on invariant measures and universality. In: Dynamics and Randomness II, A.Maass, S.Martinez, and J.San Martin (eds.), Kluwer Academic Publ., Netherlands, 2004, pp.199-228.

[8] A. Vershik. Random metric spaces and universality. Uspekhi Mat. Nauk 59, No. 2(356), 65-104 (2004). English translation: Russian Math. Surveys 59, No. 2, 259-295 (2004).

[9] A. Vershik. Polymorphisms, Markov processes, and quasisimilarity. Discrete Contin. Dyn. Syst. 13, No. 5, 1305-1324 (2005).

[10] A. Vershik. Vershik A. What does a generic Markov operator look like? Algebra i Analiz 17, No. 5, 91-104 (2005). English translation: St. Petersburg Mathematical Journal. 17, No. 5. p. 763-772. (2006)