[1] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in spectral theory and geometry (Edinburgh, 1998, E. B. Davies and Yu Safarov, eds.), London Math. Soc. Lecture Notes, 273 (1999),95-139.

[2] D. G. Chen and Q. -M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008), 325-339.

[3] Z. C. Chen and C. L. Qian, Estimates for discrete spectrum of Laplacian operator with any order, J.China Univ. Sci. Tech. 20 (1990), 259-266.

[4] Q. -M. Cheng, T. Ichikawa and S. Mametsuka, Inequalities for eigenvalues of Laplacian with any order, to appear in Commun. Contemp. Math., 2009.

[5] Q. -M. Cheng, T. Ichikawa and S. Mametsuka, Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds, to appear in J. Math. Soc. Japan.

[6] Q. -M. Cheng and H. C. Yang, Inequalities for eigenvalues of a clamped plate problem, Trans. Amer. Math. Soc. 358 (2006), 2625-2635.

[7] S. M. Hook, Domain independent upper bounds for eigenvalues of elliptic operator, Trans. Amer. Math. Soc., 318(1990), 615-642.

[8] L. E. Payne, G. Po´lya and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289-298.

[9] H. Sun, Q. -M. Cheng and H. C. Yang, Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math. 125 (2008), 139-156.

[10] Q. L. Wang, C. Y. Xia, Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds, J. Funct. Anal. 245 (2007), 334-352.