Dynamics of a single particle in a horizontally shaken box

Preprint English OPEN
Drossel, Barbara ; Prellberg, Thomas (1997)

We study the dynamics of a particle in a horizontally and periodically shaken box as a function of the box parameters and the coefficient of restitution. For certain parameter values, the particle becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall. The number of container oscillations between two chattering events depends in a fractal manner on the parameters of the system. In contrast to a vertically vibrated particle, for which chattering is claimed to be the generic fate, the horizontally shaken particle can become trapped on a periodic orbit and follow the period-doubling route to chaos when the coefficient of restitution is changed. We also discuss the case of a completely elastic particle, and the influence of friction between the particle and the bottom of the container.
  • References (3)

    3.2. Periodic trajectories [1] Stra├čburger, G., Betat, A., Scherer, M.A., Rehberg, I.: in Traffic and Granular Flow, Wolf, D.E., Schreckenbach, M., and Bachem, A. (eds.) (World Scientific, 1996) [2] Ristow, G.H., Stra├čburger, G., and Rehberg, I.: Phys.

    Rev. Lett. 79, 833 (1997) [3] Melo, F., Umbanhowar, P., Swinney. H.L: Phys. Rev.

    Lett. 72, 172 (1994); ibid 75, 3838 (1995) [4] Umbanhowar, P., Melo, F., Swinney, H.L.: Nature 382, 793 (1996) [5] Clement, E. et al.: Phys. Rev. E 53, 2972 (1996) [6] Mehta, A., Luck, J.M.: Phys. Rev. Lett. 65, 393 (1990) [7] Luck, J.M., Mehta, A.: Phys. Rev. E 48, 3988 (1993) [8] Lin, W.A., Reichl, L.E.: Physica D 19, 145 (1986) [9] Reichl, L.E.: The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations (SpringerVerlag, New York, 1992) [10] Fuka, M.Z.: Phys. Rev. E 51, 1935 (1995) [11] Lieberman, M.A., Tsang, K.Y.: Phys. Rev. Lett. 55, 908 (1985) [12] For an beautiful introduction to the Lorenz and other strange attractors see e.g. the chapters 9 to 12 of Strogatz, S.H.: Nonlinear Dynamics and Chaos (AddisonWesley, Reading, MA, 1994) [13] Budd, C., Dux, F., and Cliffe, A: Journal of Sound and Vibration 184, 475 (1995) [14] McNamara, S., Young, W.R.: Phys. Fluids A 4, 496 (1992) [15] Zhou, T., Kadanoff, J.P.: Phys. Rev. E 54, 623 (1996) [16] Du, Y., Li, H., Kadanoff, L.P.: Phys. Rev. Lett. 74, 1268 (1995)

  • Metrics
    No metrics available
Share - Bookmark