publication . Article . Preprint . 2013

Rank Gradient and p-gradient of Amalgamated Free Products and HNN Extensions

Pappas, Nathaniel;
Open Access
  • Published: 15 Sep 2013 Journal: Communications in Algebra, volume 43, pages 4,515-4,527 (issn: 0092-7872, eissn: 1532-4125, Copyright policy)
  • Publisher: Informa UK Limited
Comment: Cost of restricted action result has been strengthened. Proofs of main results have been shortened and altered. Article length has been shortened
arXiv: Mathematics::Group TheoryMathematics::Operator Algebras
free text keywords: Algebra and Number Theory, Pure mathematics, Mathematics, Free product, Profinite group, HNN extension, Algebra, Mathematics - Group Theory, 20E06, 20E15, 20F69
Related Organizations
18 references, page 1 of 2

1. M. Abert, A. Jaikin-Zapirain, and N. Nikolov, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn. 5 (2011), 213-230. [OpenAIRE]

2. M. Abert and N. Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (2012), no. 14, 1657-1677.

3. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T), New Mathematical Monographs, no. 11, Cambridge University Press, 2008. [OpenAIRE]

4. D. E. Cohen, Subgroups of HNN groups, J. Aust. Math. Soc. 17 (1974), no. 4, 394-405.

5. D. Gaboriau, Cout des relations dequivalence et des groupes, Invent. Math. (2000), no. 139, 41-98. [OpenAIRE]

6. , Invariants L2 de relations d'equivalence et de groupes, Publ. Math. Inst. Hautes. Etudes. Sci. 95 (2002), 93-150.

7. A. Kar and N. Nikolov, Rank gradient for Artin groups and their relatives, arXiv:1210.2873v3 (2012).

8. M. Lackenby, Expanders, rank and graphs of groups, Israel J. Math. 146 (2005), no. 1, 357-370.

9. , Large groups, property (τ ) and the homology growth of subgroups, Math. Proc. Camb. Phil. Soc. 146 (2009), 625-648.

10. M. Zero´n-Medina Laris, Positive rank gradient and p-largeness for groups definied by presentations with pdeficiency less than or equal to one, arXiv:1306.2467v1 (2013).

11. G. Levitt, On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems 15 (1995), 1173- 1181.

12. W. Lu¨ck, L2 invariants: theory and application to geometry and K-theory, A series of modern surveys in mathematics, vol. 44, Springer-Verlag, 2000.

13. , L2-betti numbers of some amalgamated free products of groups, an appendix in: N. Brown and K. Dykema and K. Jung, Free entropy dimension in amalgamated free products, Proc. London Math. Soc. 97 (2008), no. 2, 339-367.

14. L. Nachbin, The Haar integral, Van Norstrand Company, Inc., 1965.

15. D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), no. 1, 1-141.

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2013

Rank Gradient and p-gradient of Amalgamated Free Products and HNN Extensions

Pappas, Nathaniel;