Rank gradient and p-gradient of amalgamated free products and HNN extensions

Preprint English OPEN
Pappas, Nathaniel (2013)
  • Subject: Mathematics - Group Theory | 20E06, 20E15, 20F69
    arxiv: Mathematics::Group Theory | Mathematics::Operator Algebras

We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.
  • References (18)
    18 references, page 1 of 2

    1. M. Abert, A. Jaikin-Zapirain, and N. Nikolov, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn. 5 (2011), 213-230.

    2. M. Abert and N. Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (2012), no. 14, 1657-1677.

    3. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T), New Mathematical Monographs, no. 11, Cambridge University Press, 2008.

    4. D. E. Cohen, Subgroups of HNN groups, J. Aust. Math. Soc. 17 (1974), no. 4, 394-405.

    5. D. Gaboriau, Cout des relations dequivalence et des groupes, Invent. Math. (2000), no. 139, 41-98.

    6. , Invariants L2 de relations d'equivalence et de groupes, Publ. Math. Inst. Hautes. Etudes. Sci. 95 (2002), 93-150.

    7. A. Kar and N. Nikolov, Rank gradient for Artin groups and their relatives, arXiv:1210.2873v3 (2012).

    8. M. Lackenby, Expanders, rank and graphs of groups, Israel J. Math. 146 (2005), no. 1, 357-370.

    9. , Large groups, property (τ ) and the homology growth of subgroups, Math. Proc. Camb. Phil. Soc. 146 (2009), 625-648.

    10. M. Zero´n-Medina Laris, Positive rank gradient and p-largeness for groups definied by presentations with pdeficiency less than or equal to one, arXiv:1306.2467v1 (2013).

  • Metrics
    No metrics available
Share - Bookmark