The smooth locus in infinite-level Rapoport-Zink spaces

Preprint English OPEN
Ivanov, Alexander B.; Weinstein, Jared;
(2019)
  • Subject: 14G22 14L05 | Mathematics - Algebraic Geometry | Mathematics - Number Theory
    arxiv: Mathematics::Algebraic Geometry

Rapoport-Zink spaces are deformation spaces for $p$-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let $\mathscr{M}_{\infty}$ be an infinite-level Rapoport-Zink space of EL type, and let $\mathscr{M}_{\infty}^\circ$ be o... View more
  • References (6)

    [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, SpringerVerlag, Berlin, 1990.

    [Che14] Miaofen Chen, Composantes connexes géométriques de la tour des espaces de modules de groupes p-divisibles, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 723-764.

    [Kot85] Robert E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201- 220.

    [LB18] Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de FarguesFontaine, Duke Math. J. 167 (2018), no. 18, 3455-3532.

    [SW13] Peter Scholze and Jared Weinstein, Moduli of p-divisible groups, Camb. J. Math. 1 (2013), no. 2, 145-237.

    [Wei16] Jared Weinstein, Semistable models for modular curves of arbitrary level, Invent. Math. 205 (2016), no. 2, 459-526.

  • Related Organizations (1)
  • Metrics
Share - Bookmark