Perron-Frobenius Theorem for Rectangular Tensors and Directed Hypergraphs

Preprint English OPEN
Lu, Linyuan ; Yang, Arthur L. B. ; Zhao, James J. Y. (2018)
  • Subject: Mathematics - Combinatorics | 15A18, 15A69, 05C65

For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${\cal A}=(a_{i_1\cdots i_r}^{j_1\cdots j_s}) \in ({\mathbb R}^n)^r\times ({\mathbb R}^m)^s$ is called partially symmetric if it is invariant under any permutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-spectral radius (or singular values) and proved a Perron-Fronbenius theorem for such tensors when both $p,q \geq r+s$. We improved their results by extending to all $(p,q)$ satisfying $\frac{r}{p} +\frac{s}{q}\leq 1$. We also proved the Perron-Fronbenius theorem for general nonnegative $(r,s)$-order $(n,m)$-dimensional rectangular tensors when $\frac{r}{p}+\frac{s}{q}>1$. We essentially showed that this is best possible without additional conditions on $\cal A$. Finally, we applied these results to study the $(p,q)$-spectral radius of $(r,s)$-uniform directed hypergraphs.
  • References (25)
    25 references, page 1 of 3

    [1] M. Akian, S. Gaubert and R. Nussbaum, Uniqueness of the fixed point of nonexpansive semidifferentiable maps, Trans. Amer. Math. Soc. 368(2) (2016), 1271-1320.

    [2] S. Bai and L. Lu, Spectral Radius of {0,1}-tensor with prescribed number of ones, arXiv:1801.02784.

    [4] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.

    [5] K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6(2) (2008), 507-520.

    [6] J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012), 3268- 3292.

    [7] P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. Math. 162(2) (2005), 581-642.

    [8] S. Friedland, S. Gaubert, and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl. 438(2) (2013), 738-749.

    [9] G. Frobenius, Ueber Matrizen aus nicht negativen Elementen, Sitzungsber. K¨onigl. Preuss. Akad. Wiss. (1912), 456-477.

    [10] S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, Trans. Amer. Math. Soc. 356 (2004), 4931-4950.

    [11] L.P. Hansen and J.A. Scheinkman, Long-term risk: An operator approach, Econometrica 77(1) (2009), 177-234.

  • Metrics
    No metrics available
Share - Bookmark