publication . Preprint . 2007

Equivalence between quantum simultaneous games and quantum sequential games

Kobayashi, Naoki;
Open Access English
  • Published: 05 Nov 2007
Abstract
A framework for discussing relationships between different types of games is proposed. Within the framework, quantum simultaneous games, finite quantum simultaneous games, quantum sequential games, and finite quantum sequential games are defined. In addition, a notion of equivalence between two games is defined. Finally, the following three theorems are shown: (1) For any quantum simultaneous game G, there exists a quantum sequential game equivalent to G. (2) For any finite quantum simultaneous game G, there exists a finite quantum sequential game equivalent to G. (3) For any finite quantum sequential game G, there exists a finite quantum simultaneous game equiv...
Subjects
arXiv: Computer Science::Computer Science and Game Theory
ACM Computing Classification System: ComputingMilieux_PERSONALCOMPUTINGComputerSystemsOrganization_MISCELLANEOUSTheoryofComputation_GENERAL
free text keywords: Quantum Physics
Download from

[1] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).

[2] P. Ordeshook, Game Theory and Political Theory: An Introduction (Cambridge University Press, Cambridge, 1986).

[3] J. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982).

[4] D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999), arXiv:quant-ph/9804010.

[5] J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83, 3077 (1999), arXiv:quant-ph/9806088.

[6] J. Eisert and M. Wilkens, J. Mod. Optic. 47, 2543 (2000), arXiv:quant-ph/0004076.

[7] L. Marinatto and T. Weber, Phys. Lett. A 272, 291 (2000), arXiv:quant-ph/0004081.

[8] S. C. Benjamin and P. M. Hayden, Phys. Rev. A 64, 030301(R) (2001), arXiv:quant-ph/0007038.

[9] J. Du et al., Phys. Rev. Lett. 88, 137902 (2002), arXiv:quant-ph/0104087.

[10] A. P. Flitney and D. Abbott, Phys. Rev. A 65, 062318 (2002), arXiv:quant-ph/0109035.

[11] A. P. Flitney and D. Abbott, Journal of Optics B 6, S860 (2004), arXiv:quant-ph/0305058.

[12] C. F. Lee and N. F. Johnson, Phys. Rev. A 67, 022311 (2003), arXiv:quant-ph/0207012.

[13] M. Osborne and A. Rubinstein, A Course in Game Theory (MIT Press, Cambridge, Massachusetts, 1994).

[14] Amount of information exchange between players and a referee, required to play a game. See Ref. [12] for more detail.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue