An Algorithm for constructing Hjelmslev planes

Preprint English OPEN
Hall, Joanne L.; Rao, Asha;

Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal a... View more
  • References (18)
    18 references, page 1 of 2

    [1] R. A. Bailey, Peter J. Cameron, Peter Dobcsnyi, John P. Morgan, and Leonard H. Soicher. U.K. Engineering and Physical Sciences Research Council,, updated on 2009-09-17.

    [2] T. Beth, D. Jungnickel, and H. Lenz. Design Theory. Cambridge University Press, 1993.

    [3] C. J. Colbourn and J.H. Dinitz, editors. Handbook of Combinatorial Designs. Chapman and Hall/CRC Press, second edition, 2007.

    [4] Robert T. Craig. Extensions of finite projective planes I. Uniform Hjelmslev planes. Canad. J. Math., 16:261-266, 1964.

    [5] P. Dembowski. Finite Geometries. Classics in Mathematics. Springer, reprint of the 1968 edition, 1997.

    [6] David A. Drake. On n-uniform Hjelmslev planes. J. Combin. Theory, 9:267-288, 1970.

    [7] David A. Drake. Existence of parallelisms and projective extensions for strongly n-uniform near affine Hjelmslev planes. Geom. Dedicata, 8:191- 214, 1974.

    [8] David A. Drake. Nonexistence results for finite Hjelmslev planes. Abh. Math. Semin. Univ. Hambg., 40:100-110, 1974.

    [9] David A. Drake and Ernest E. Shult. Construction of Hjelmslev planes from {t, k} nets. Geom. Dedicata, 5:377-392, 1976.

    [10] T. Honold and M. Kiermaier. The existence of maximal (q2, 2)-arcs in projective hjelmselv planes over chain rings of lenght 2 and odd prime characteristic. Designs, Codes and Cryptography, DOI 10.1007/s10623-012- 9653-y, 2012.

  • Related Organizations (1)
  • Metrics
Share - Bookmark