DynaNet: Neural Kalman Dynamical Model for Motion Estimation and Prediction
- Published: 11 Aug 2019
[1] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J. Davison. CodeSLAM - Learning a Compact, Optimisable Representation for Dense Visual SLAM. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[2] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust Visual Inertial Odometry Using a Direct EKF-Based Approach. In IEEE International Conference on Intelligent Robots and Systems, volume 2015-Decem, pages 298-304, 2015.
[3] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz. Geometry-Aware Learning of Maps for Camera Localization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2616-2625, 2018.
[4] Tayfun Çimen. State-Dependent Riccati Equation (SDRE) Control: A survey, volume 17. IFAC, 2008. [OpenAIRE]
[5] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen. VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[6] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni. VINet: VisualInertial Odometry as a Sequence-to-Sequence Learning Problem. In Association for the Advancement of Artificial Intelligence (AAAI), pages 3995-4001, 2017.
[7] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. MonoSLAM: RealTime Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052-1067, 2007.
[8] D. G. Dudley. Dynamic system identification experiment design and data analysis. Proceedings of the IEEE, 67(7):1087-1087, July 1979.
[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM. In European Conference on Computer Vision (ECCV), 2014. [OpenAIRE]
[10] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-Dense Visual Odometry for a Monocular Camera. In IEEE International Conference on Computer Vision (ICCV), pages 1449-1456, 2013.
[11] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation. In Robotics: Science and Systems, 2015. [OpenAIRE]
[12] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast Semi-Direct Monocular Visual Odometry. In IEEE International Conference on Robotics and Automation (ICRA), pages 15-22, 2014.
[13] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. In Advances in Neural Information Processing Systems (NIPS), 2017. [OpenAIRE]
[14] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential Neural Models with Stochastic Layers. In Advances in Neural Information Processing Systems (NIPS), 2016. [OpenAIRE]
[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.
[1] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J. Davison. CodeSLAM - Learning a Compact, Optimisable Representation for Dense Visual SLAM. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[2] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust Visual Inertial Odometry Using a Direct EKF-Based Approach. In IEEE International Conference on Intelligent Robots and Systems, volume 2015-Decem, pages 298-304, 2015.
[3] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz. Geometry-Aware Learning of Maps for Camera Localization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2616-2625, 2018.
[4] Tayfun Çimen. State-Dependent Riccati Equation (SDRE) Control: A survey, volume 17. IFAC, 2008. [OpenAIRE]
[5] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen. VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[6] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni. VINet: VisualInertial Odometry as a Sequence-to-Sequence Learning Problem. In Association for the Advancement of Artificial Intelligence (AAAI), pages 3995-4001, 2017.
[7] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. MonoSLAM: RealTime Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052-1067, 2007.
[8] D. G. Dudley. Dynamic system identification experiment design and data analysis. Proceedings of the IEEE, 67(7):1087-1087, July 1979.
[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM. In European Conference on Computer Vision (ECCV), 2014. [OpenAIRE]
[10] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-Dense Visual Odometry for a Monocular Camera. In IEEE International Conference on Computer Vision (ICCV), pages 1449-1456, 2013.
[11] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation. In Robotics: Science and Systems, 2015. [OpenAIRE]
[12] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast Semi-Direct Monocular Visual Odometry. In IEEE International Conference on Robotics and Automation (ICRA), pages 15-22, 2014.
[13] Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. In Advances in Neural Information Processing Systems (NIPS), 2017. [OpenAIRE]
[14] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential Neural Models with Stochastic Layers. In Advances in Neural Information Processing Systems (NIPS), 2016. [OpenAIRE]
[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.