On the topological entropy of an optical Hamiltonian flow

Preprint English OPEN
Niche, Cesar J.;
(2000)
  • Related identifiers: doi: 10.1088/0951-7715/14/4/309
  • Subject: Mathematics - Symplectic Geometry | 53Dxx | Mathematics - Dynamical Systems | Mathematics - Differential Geometry | 37Jxx
    arxiv: Mathematics::Symplectic Geometry

In this article we prove two formulas for the topological entropy of an F-optical Hamiltonian flow induced by a C^{\infty} Hamiltonian, where F is a Lagrangian distribution. In these formulas, we calculate the topological entropy as the exponential growth rate of the av... View more
  • References (13)
    13 references, page 1 of 2

    [1] Bialy M. y Polterovich L.; Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. and Funct. Anal. 2, (1992), 173 - 210.

    [2] Bialy M. y Polterovich L.; Optical Hamiltonian functions, en Geometry in partial differential equations, ed. A. Prastaso, World Scientific, (1994), 32 - 50.

    [3] Bowen, R.; Entropy for group endomorphisms and homogeneous spaces, Trans. of the Am. Math. Soc. 153, (1971), 401 - 414.

    [4] Burns, K. y Paternain G.P.; Anosov magnetic flows, critical values and topological entropy, available as preprint at http://www.cmat.edu.uy/, on February 1, 2008.

    [5] Cogswell, K.; Entropy and volume growth, Ergod. Th. and Dynam. Sys. 20, (2000), 77 - 84.

    [6] Kozlovski O.S.; A formula for the topological entropy of C∞ maps, Ergod. Th. and Dynam. Sys. 18, (1998), 405 - 424.

    [7] Man˜´e R.; On the topological entropy of geodesic flows, J. Diff. Geom. 45, (1997), 74 - 93.

    [8] Mc Duff D. y Salamon D.; Introduction to Symplectic Topology, Oxford Mathematical Monographs, Oxford University Press (1995).

    [9] Newhouse, S.; Continuity properties of entropy, Annals of Math. 129, (1989), 215 - 235.

    [10] Newhouse, S.; Entropy and volume, Ergod. Th. and Dynam. Sys. 8 *, (1988), 283 - 299.

  • Similar Research Results (6)
  • Metrics
Share - Bookmark