publication . Preprint . 2017

Topological interpretation of Luttinger theorem

Seki, Kazuhiro; Yunoki, Seiji;
Open Access English
  • Published: 02 Aug 2017
Comment: 23 pages, 13 figures, to be published in Phys. Rev. B
arXiv: Condensed Matter::Strongly Correlated ElectronsCondensed Matter::Quantum Gases
free text keywords: Condensed Matter - Strongly Correlated Electrons
Download from
60 references, page 1 of 4

[2] J. M. Luttinger and J. C. Ward, Ground-State Energy of a ManyFermion System. II, Phys. Rev. 118, 1417 (1960).

[3] M. Oshikawa, Topological Approach to Luttinger's Theorem and the Fermi Surface of a Kondo Lattice, Phys. Rev. Lett. 84, 3370 (2000). [OpenAIRE]

[4] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of quantum field theory in statistical physics (Dover publications, New York, 1975), Sec. 19.4, Chap. 4.

[5] I. Dzyaloshinskii, Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators, Phys. Rev. B 68, 085113 (2003). [OpenAIRE]

[6] F. H. L. Essler and A. M. Tsvelik, Weakly coupled onedimensional Mott insulators, Phys. Rev. B 65, 115117 (2002).

[7] A. Rosch, Breakdown of Luttinger's theorem in two-orbital Mott insulators, Eur. Phys. J. B. 59, 495 (2007).

[8] J. Ortlo , M. Balzer, and M. Pottho , Non-perturbative conserving approximations and Luttinger's sum rule, Eur. Phys. J. B 58, 37 (2007).

[9] M. Yamanaka, M. Oshikawa, and I. A eck, Nonperturbative Approach to Luttinger's Theorem in One Dimension, Phys. Rev. Lett. 79, 1110 (1997). [OpenAIRE]

[10] T. D. Stanescu, and G. Kotliar, Fermi arcs and hidden zeros of the Green function in the pseudogap state, Phys. Rev. B 74, 125110 (2006). [OpenAIRE]

[11] T. D. Stanescu, P. Phillips, and T.-P. Choy, Theory of the Luttinger surface in doped Mott insulators, Phys. Rev. B 75, 104503 (2007).

[12] S. Sakai, Y. Motome, and M. Imada, Evolution of Electronic Structure of Doped Mott Insulators: Reconstruction of Poles and Zeros of Green's Function, Phys. Rev. Lett. 102, 056404 (2009). [OpenAIRE]

[13] M. Imada, Y. Yamaji, S. Sakai, Y. Motome, Theory of pseudogap and superconductivity in doped Mott insulators, Ann. Phys., 523, 629 (2011). [OpenAIRE]

[14] R. Eder, K. Seki, and Y. Ohta, Self-energy and Fermi surface of the two-dimensional Hubbard model, Phys. Rev. B 83, 205137 (2011).

[15] P. Phillips, Advanced solid state physics, Second edition (Cambridge University Press, Cambridge, 2012), Sec. 16.3, Chap. 16.

[16] D. Se´ne´chal, D. Perez, and M. Pioro-Ladriere, Spectral Weight of the Hubbard Model through Cluster Perturbation Theory, Phys. Rev. Lett. 84, 522 (2000). [OpenAIRE]

60 references, page 1 of 4
Any information missing or wrong?Report an Issue