2D Toda chain and associated commutator identity

Preprint English OPEN
Pogrebkov, A. K.;
(2007)
  • Subject: Mathematical Physics | Nonlinear Sciences - Exactly Solvable and Integrable Systems | High Energy Physics - Theory
    arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems

Developing observation made in \cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generi... View more
  • References (6)

    ip ζ − 1 b(p, ζ). [1] A. K. Pogrebkov, “Commutator identities on associative algebras and integrability of nonlin-

    ear pardial differential equations”, nlin.SI/0703018, to be published in Theor. Math.Phys.,

    (2007) [2] A. K. Pogrebkov, “On time evolutions associated with the nonstationary Schro”dinger equa-

    Amer. Math. Soc. Transl. (2) 201 pp. 239-255 (2000) [3] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Theor. Math. Phys. 93 1200

    (1992). [4] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Inverse Problems 8 331

    (1992). [5] M. Boiti, F. Pempinelli, and A. Pogrebkov, Journ. Math. Phys. 35 4683 (1994). [6] M. Boiti, F. Pempinelli, A. K. Pogrebkov and B. Prinari, Inverse Problems 17 937 (2001) [7] M. Boiti, F. Pempinelli, A. K. Pogrebkov and B. Prinari, Journ. Math. Phys. 44 3309 (2003) [8] S. V. Manakov, Physica D3 (1981) 420

  • Metrics
Share - Bookmark