publication . Preprint . Other literature type . 2007

2D Toda chain and associated commutator identity

A. K. Pogrebkov;
Open Access English
  • Published: 06 Nov 2007
Abstract
Developing observation made in \cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generic conditions, enables derivation of the Toda chain equation and its Lax pair from the given commutator identity.
Subjects
arXiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems
free text keywords: Nonlinear Sciences - Exactly Solvable and Integrable Systems, High Energy Physics - Theory, Mathematical Physics

ip ζ − 1 b(p, ζ). [1] A. K. Pogrebkov, “Commutator identities on associative algebras and integrability of nonlin-

ear pardial differential equations”, nlin.SI/0703018, to be published in Theor. Math.Phys.,

(2007) [2] A. K. Pogrebkov, “On time evolutions associated with the nonstationary Schro”dinger equa-

Amer. Math. Soc. Transl. (2) 201 pp. 239-255 (2000) [3] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Theor. Math. Phys. 93 1200

(1992). [4] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Inverse Problems 8 331

(1992). [5] M. Boiti, F. Pempinelli, and A. Pogrebkov, Journ. Math. Phys. 35 4683 (1994). [6] M. Boiti, F. Pempinelli, A. K. Pogrebkov and B. Prinari, Inverse Problems 17 937 (2001) [7] M. Boiti, F. Pempinelli, A. K. Pogrebkov and B. Prinari, Journ. Math. Phys. 44 3309 (2003) [8] S. V. Manakov, Physica D3 (1981) 420 [OpenAIRE]

Any information missing or wrong?Report an Issue