## Shadows, ribbon surfaces, and quantum invariants

*Carrega, Alessio*;

*Martelli, Bruno*;

- Subject: Mathematics - Geometric Topologyarxiv: Mathematics::Geometric Topology | Mathematics::Quantum Algebra

- References (26)
[1] D. Bullock, C. Frohman, J. Kania-Bartoszynska, The Yang-Mills measure in the Kau man bracket skein module, Comment. Math. Helv. 78 (2003), 1{17.

[2] U. Burri, For a xed Turaev shadow Jones-Vassiliev invariants depend polynomially on the gleams, Comment. Math. Helv. 72 (1997), 110{127.

[3] F. Costantino Complexity of 4-manifolds, Experimental Math. 15 (2006), 237{249.

[4] , Colored Jones invariants of links in #kS2 S1 and the Volume Conjecture, J. Lond. Math. Soc. 76 (2007), 1{15.

[5] , Integrality of Kau man brackets of trivalent graphs, arXiv:0908.0542

[6] F. Costantino, B. Martelli, An analytic family of representations for the mapping class group of punctured surfaces, arXiv:1210.2666

[7] F. Costantino, D. Thurston, 3-manifolds e ciently bound 4-manifolds, Journal of Topology, 1 (2008), 703{745.

[8] , A shadow calculus for 3-manifolds, preprint.

[9] M. Eisermann, The Jones polynomial of ribbon links, Geom. Topol. 13 (2009), 523{ 660.

[10] C. Frohman, J. Kania-Bartoszynska, Shadow world evaluation of the Yang-Mills measure, Algebr. Geom. Topol. 4 (2004), 311{332.

- Similar Research Results (8)
- Metrics No metrics available

- Download from

- Cite this publication