Carbuncles as selfsimilar entropy solutions

Subject: Mathematical Physics  76L05  74S10  Mathematics  Numerical Analysis  76N10

References
(11)
11 references, page 1 of 2
 1
 2
[CBGS02] J.F. Coulombel, S. BenzoniGavage, and D. Serre, Note on a paper by Robinet, Gressier, Casalis & Moschetta, J. Fluid Mech. 469 (2002), 401405.
[DMG03] M. Dumbser, J.M. Moschetta, and J. Gressier, A matrix stability analysis of the carbuncle phenomenon, submitted to Elsevier Science, 2003.
[KRW96] D. Kr¨oner, M. Rokyta, and M. Wierse, A LaxWendroff type theorem for upwind finite volume schemes in 2D, EastWest J. Numer. Math. 4 (1996), 279292.
P. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217237.
K.W. Morton and P. Roe, Vorticitypreserving LaxWendrofftype schemes for the system wave equation, SIAM J. Sci. Comput. 23 (2001), no. 1, 170192.
S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comp. 38 (1982), 339373.
K.M. Peery and S.T. Imlay, Bluntbody flow simulations, AIAA paper 882904, 1988.
Numer. Meth. Fluids 18 (1994), 555574.
[LW60] [MR01] [OS82] [PI88] [Qui94] [Roe81] [SO89] [RGCJ00] J.Ch. Robinet, J. Gressier, G. Casalis, and J.M. Moschetta, Shock wave instability and the carbuncle phenomenon: same intrinsic origin?, J. Fluid Mech. 417 (2000), 237263.
P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981), 357372.

Similar Research Results
(13)
13 research results, page 1 of 2
 1
 2

Metrics
No metrics available

 Download from


Cite this publication