publication . Article . Preprint . Other literature type . 2018

Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal

Liu, Enke; Sun, Yan; Kumar, Nitesh; Muechler, Lukas; Sun, Aili; Jiao, Lin; Yang, Shuo-Ying; Liu, Defa; Liang, Aiji; Xu, Qiunan; ...
  • Published: 30 Jul 2018
  • Publisher: Springer Science and Business Media LLC
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate Co3Sn2S2 with a quasi-two-dimensional crystal structure consisting of stacked Kagome lattices. This lattice provides an excellent platform for hosting exotic quantum topological states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corrobora...
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Materials Science, Article, Hall effect, Semimetal, Fermion, Chiral anomaly, Physics, Fermi level, symbols.namesake, symbols, Condensed matter physics, Berry connection and curvature, Weyl semimetal, Magnetoresistance
Funded by
Inverse Design on an Atomic scale: Multifunctional Heusler compounds!
  • Funder: European Commission (EC)
  • Project Code: 291472
  • Funding stream: FP7 | SP2 | ERC
Topological Materials: New Fermions, Realization of Single Crystals and their Physical Properties
  • Funder: European Commission (EC)
  • Project Code: 742068
  • Funding stream: H2020 | ERC | ERC-ADG
61 references, page 1 of 5

1. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92-95 (2003).

2. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. and Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539-1592 (2010). [OpenAIRE]

3. Haldane, F. D. M. Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

4. Xiao, D., Chang, M. C. and Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010).

5. Nakatsuji, S., Kiyohara, N. and Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212-215 (2015). [OpenAIRE]

6. Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. and Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

7. Yan, B. and Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337-354 (2017).

8. Weng, H. M., Yu, R., Hu, X., Dai, X. and Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227-282 (2015).

9. Liu, C.-X., Zhang, S.-C. and Qi, X.-L. The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301-321 (2016).

10. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61-64 (2010).

11. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167-170 (2013).

12. Fang, C., Gilbert, M. J. and Bernevig, B. A. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014).

13. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

14. Burkov, A. A. and Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

15. Zyuzin, A. A., Wu, S. and Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

61 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue