publication . Preprint . 2014

Plasmon mediated non-photochemical nucleation of nanoparticles by circularly polarized light

Karpov, Victor G.; Grigorchuk, Nicholas I.;
Open Access English
  • Published: 28 Feb 2014
Abstract
We predict nucleation of pancake shaped metallic nanoparticles having plasmonic frequencies in resonance with a non-absorbed circularly polarized electromagnetic field. We show that the same field can induce nucleation of randomly oriented needle shaped particles. The probabilities of these shapes are estimated vs. field frequency and strength, material parameters, and temperature. This constitutes a quantitative model of non-photochemical laser induced nucleation (NPLIN) consistent with the observed particle geometry. Our results open a venue to nucleation of nanoparticles of desirable shapes controlled by the field frequency and polarization.
Subjects
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Statistical Mechanics
Download from
30 references, page 1 of 2

1 B. A. Garetz, J. Matic, and A. S. Myerson, Phys. Rev. Lett. 89, 175501 (2002). M. R. Ward, S. McHugh and A. J. Alexander, Phys. Chem. Chem. Phys. 14, 90 (2012).

2 R.C. deVekey and A.J. Majumdar, Nature 225, 172 (1970); W. Liu, K.M. Liang, Y.K. Zheng, S.R. Gu, H. Chen, J. Phys. D Appl. Phys 30, 3366 (1997); J. Duchene, M. Terraillon, P. Paily, and G. Adam, Appl. Phys. Lett. 19, 115 (1971); B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, and H.-T. Kim, Appl. Phys. Lett. 90, 023515 (2007); K. Okimura, N. Ezreena, Y. Sasakawa, and J. Sakai, Japan J. Appl. Phys. 48, 065003 (2009).

3 V. Lyubin, M. Klebanov, M. Mitkova and T. Petkova, Appl. Phys. Lett. 71, 2118 (1997). V.I. Mikla, I.P. Mikhalko, and V.V. Mikla, Materials Science and Engineering B83, 74 (2001).

4 V. G. Karpov, Y. A. Kryukov, I. V. Karpov, and M. Mitra, Phys. Rev. B 78, 052201 (2008); I. V. Karpov, M. Mitra, G. Spadini, U. Kau, Y. A. Kryukov, and V. G. Karpov, Appl. Phys. Lett. 92, 173501 (2008); M. Nardone and V. G. Karpov, Appl. Phys. Lett., 100, 151912 (2012);

5 M. Nardone and V. G. Karpov, Phys. Chem. Chem. Phys., 14, 13601 (2012).

6 H. Lin, T. Ohta, A. Paula, J. A. Hutchison, D. Kirilenko, O. Lebedev, G.V. Tendelood, J. Hofkens, H. Uji, Journal of Photochemistry and Photobiology A: Chemistry 221 220 (2011).

7 S. J. Kim, C. S. Ah, D. -J. Jang, Journal of Nanoparticle Research, 11, 2023 (2008).

8 J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao, Appl. Phys. Lett., 81, 3040 (2002).

9 K. Miura, K. Hirao and Y. Shimotsuma, ”Nanowire formation under femtosecond laser radiation in liquid” in Nanowires - Fundamental Research Edited by Abbass Hashim, InTech 2011.

10 V.B. Warshavsky, A.K. Shchekin, Colloids and Surfaces A: Physicochemical and Engineering Aspects 148, 283 (1999).

11 J.O. Isard, Phil. Mag. 35, 817 (1977).

12 D. Kashchiev, Nucleation: Basic Theory with Applications Butterworth-Heinemann. Oxford, Amsterdam 2000.

13 V. G. Karpov, M. Nardone, and N. I. Grigorchuk, Phys. Rev. B 86, 075463 (2012).

14 V. G. Karpov, M. Nardone, and A. V. Subashiev, Appl. Phys. Lett. 101, 031911 (2012). [OpenAIRE]

15 B. A. Garetz, J. Matic, A. S. Myerson, Phys. Rev. Lett., 89, 175501 (2002).

30 references, page 1 of 2
Any information missing or wrong?Report an Issue