# A prediction for bubbling geometries

- Published: 27 Aug 2007

[7] H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 10 (2004) 025, hep-th/0409174.

[8] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80 (1998) 4859-4862, hep-th/9803002.

[9] S.-J. Rey and J.-T. Yee, “Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity,” Eur. Phys. J. C22 (2001) 379-394, hep-th/9803001.

[10] N. Drukker and B. Fiol, “All-genus calculation of Wilson loops using D-branes,” JHEP 02 (2005) 010, hep-th/0501109. [OpenAIRE]

[11] J. Gomis and F. Passerini, “Holographic Wilson loops,” JHEP 08 (2006) 074, hep-th/0604007.

[12] S. Yamaguchi, “Wilson loops of anti-symmetric representation and D5- branes,” JHEP 05 (2006) 037, hep-th/0603208.

[13] S. A. Hartnoll and S. P. Kumar, “Higher rank Wilson loops from a matrix model,” JHEP 08 (2006) 026, hep-th/0605027.

[14] S. Yamaguchi, “Bubbling geometries for half BPS Wilson lines,” Int. J. Mod. Phys. A22 (2007) 1353-1374, hep-th/0601089.

[15] J. Gomis and F. Passerini, “Wilson loops as D3-branes,” JHEP 01 (2007) 097, hep-th/0612022.

[16] O. Lunin, “On gravitational description of Wilson lines,” JHEP 06 (2006) 026, hep-th/0604133.

[17] E. D'Hoker, J. Estes, and M. Gutperle, “Gravity duals of half-BPS Wilson loops,” arXiv:0705.1004 [hep-th].

[18] J. Gomis and T. Okuda, “Wilson loops, geometric transitions and bubbling CalabiYau's,” JHEP 02 (2007) 083, hep-th/0612190.

[19] J. Gomis and T. Okuda, “D-branes as a Bubbling Calabi-Yau,” JHEP 07 (2007) 005, arXiv:0704.3080 [hep-th].

[20] T. Okuda, “BIons in topological string theory,” arXiv:0705.0722 [hep-th].

[21] S. Gukov and E. Witten, “Gauge theory, ramification, and the geometric langlands program,” hep-th/0612073.