publication . Article . Preprint . 2018

On the rigidity of rank gradient in a group of intermediate growth

Rostyslav Kravchenko; Rostislav Grigorchuk;
Open Access
  • Published: 22 Feb 2018 Journal: Ukrainian Mathematical Journal, volume 70, pages 182-196 (issn: 0041-5995, eissn: 1573-9376, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
We introduce and investigate a rigidity property of rank gradient for an example of a group $$ \mathcal{G} $$ of intermediate growth constructed by the first author in [R. I. Grigorchuk, Funkts.. Anal. Prilozh., 14 No. 1, 53–54 (1980)]. It is shown that $$ \mathcal{G} $$ is normally (f, g)-RG rigid, where f(n) = log(n) and g(n) = log(log(n)).
Subjects
free text keywords: General Mathematics, Mathematics - Dynamical Systems, Mathematics - Group Theory, Rigidity (psychology), Combinatorics, Mathematics
Related Organizations

[1] Miklós Abért and Nikolay Nikolov. Rank gradient, cost of groups and the rank versus Heegaard genus problem. J. Eur. Math. Soc. (JEMS), 14(5):1657-1677, 2012.

[2] Laurent Bartholdi and Rostislav I. Grigorchuk. On parabolic subgroups and Hecke algebras of some fractal groups. Serdica Math. J., 28(1):47-90, 2002.

[3] N.N. Bogolyubov. On some ergodic properties of continious groups of transformations. Nauk. Zap. Kiïv Derzh. Univ. im. T.G.Shevchenka, 4(5):45-52, 1939.

[4] R. Grigorchuk and R. Kravchenko. On the lattice of subgroups of the lamplighter group. Internat. J. Algebra Comput., 24(6):837-877, 2014.

[5] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.

[6] R. I. Grigorchuk. Just infinite branch groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 121-179. Birkhäuser Boston, Boston, MA, 2000.

[7] R. I. Grigorchuk. Some problems of the dynamics of group actions on rooted trees. Tr. Mat. Inst. Steklova, 273(Sovremennye Problemy Matematiki):72-191, 2011. [OpenAIRE]

[8] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanski˘ı. Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134-214, 2000.

[9] Rostislav Grigorchuk. Solved and unsolved problems around one group. In Infinite groups: geometric, combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 117-218. Birkhäuser, Basel, 2005.

[10] R. I. Grigorčuk. On Burnside's problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53-54, 1980.

[11] F. J. Grunewald, D. Segal, and G. C. Smith. Subgroups of finite index in nilpotent groups. Invent. Math., 93(1):185-223, 1988.

[12] Marc Lackenby. Expanders, rank and graphs of groups. Israel J. Math., 146:357-370, 2005. [OpenAIRE]

[13] Alexander Lubotzky and Dan Segal. Subgroup growth, volume 212 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2003.

[14] John von Neumann. Zurr allgemeinen theorie des masses. Fund.Math., 13:73-116, 1929.

Any information missing or wrong?Report an Issue