On the rigidity of rank gradient in a group of intermediate growth

Preprint English OPEN
Grigorchuk, Rostislav; Kravchenko, Rostyslav;
(2018)
  • Subject: Mathematics - Group Theory | Mathematics - Dynamical Systems

We introduce and investigate the rigidity property of rank gradient in the case of the group $\mathcal G$ of intermediate growth constructed by the first author. We show that $\mathcal G$ is normally $(f,g)$-RG rigid where $f(n)=\log(n)$ and $g(n) =\log(\log(n)).$
  • References (14)
    14 references, page 1 of 2

    [1] Miklós Abért and Nikolay Nikolov. Rank gradient, cost of groups and the rank versus Heegaard genus problem. J. Eur. Math. Soc. (JEMS), 14(5):1657-1677, 2012.

    [2] Laurent Bartholdi and Rostislav I. Grigorchuk. On parabolic subgroups and Hecke algebras of some fractal groups. Serdica Math. J., 28(1):47-90, 2002.

    [3] N.N. Bogolyubov. On some ergodic properties of continious groups of transformations. Nauk. Zap. Kiïv Derzh. Univ. im. T.G.Shevchenka, 4(5):45-52, 1939.

    [4] R. Grigorchuk and R. Kravchenko. On the lattice of subgroups of the lamplighter group. Internat. J. Algebra Comput., 24(6):837-877, 2014.

    [5] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.

    [6] R. I. Grigorchuk. Just infinite branch groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 121-179. Birkhäuser Boston, Boston, MA, 2000.

    [7] R. I. Grigorchuk. Some problems of the dynamics of group actions on rooted trees. Tr. Mat. Inst. Steklova, 273(Sovremennye Problemy Matematiki):72-191, 2011.

    [8] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanski˘ı. Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134-214, 2000.

    [9] Rostislav Grigorchuk. Solved and unsolved problems around one group. In Infinite groups: geometric, combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 117-218. Birkhäuser, Basel, 2005.

    [10] R. I. Grigorčuk. On Burnside's problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53-54, 1980.

  • Related Organizations (1)
  • Metrics
Share - Bookmark