publication . Article . Preprint . 2012


Huichi Huang;
  • Published: 21 Oct 2012
We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.
arXiv: Mathematics::General Topology
free text keywords: Topology, Compact group, Locally compact space, Orbit, Invariant (mathematics), Mathematics, Locally compact group, Compact quantum group, Relatively compact subspace, Invariant polynomial, Algebra, Mathematics - Operator Algebras, Mathematics - Quantum Algebra, 46L65 (Primary), 16W22 (Secondary)
24 references, page 1 of 2

[1] T. Banica. Fusion rules for representations of compact quantum groups. Exposition. Math. 17 (1999), no. 4, 313-337.

[2] T. Banica. Representations of compact quantum groups and subfactors. J. Reine Angew. Math. 509 (1999), 167-198.

[3] E. B´edos, G. J. Murphy, and L. Tuset. Co-amenability of compact quantum groups. J. Geom. Phys. 40 (2001), no. 2, 130-153.

[4] F. P. Boca. Ergodic actions of compact matrix pseudogroups on C*-algebras. Recent advances in operator algebras, Orl`eans, 1992, Ast´erisque 232 (1995), 93-109.

[5] J. Cuntz. Simple C∗-algebras generated by isometries. Comm. Math. Phys. 57 (1977), no. 2, 173-185. [OpenAIRE]

[6] D. Goswami. Quantum symmetries and quantum isometries of compact metric spaces. arXiv: 0811.0095.

[7] R. Høegh-Krohn, M.B. Landstad and E. Størmer. Compact ergodic groups of automorphisms. Ann. of Math. 114 (1981), no.1, 75-86.

[8] T. Jech. Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.

[9] R. Kadison and J. Ringrose. Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997. [OpenAIRE]

[10] B. Li. Introduction to Operator Algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 1992.

[11] H. Li. Compact quantum metric spaces and ergodic actions of compact quantum groups. J. Funct. Anal. 256 (2009), no. 10, 3368-3408.

[12] M. Maes and A. Van Daele. Notes on compact quantum groups. Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73-112.

[13] C. Pinzari. Growth rates of dimensional invariants of compact quantum groups and a theorem of Høegh-Krohn, Landstad and Størmer. arXiv:1101.4534. To appear in Proc. Amer. Math. Soc.

[14] P. Podle´s. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Comm. Math. Phys. 170 (1995), no.1, 1-20.

[15] P. Podle´s and E. Mu¨ller. Introduction to quantum groups. Rev. Math. Phys. 10 (1998), no. 4, 511-551.

24 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2012


Huichi Huang;