publication . Article . Preprint . 2012

Invariant subsets under compact quantum group actions

Huichi Huang;
Open Access
  • Published: 21 Oct 2012 Journal: Journal of Noncommutative Geometry, volume 10, pages 447-469 (issn: 1661-6952, Copyright policy)
  • Publisher: European Mathematical Publishing House
We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.
Persistent Identifiers
arXiv: Mathematics::General Topology
free text keywords: Mathematics - Operator Algebras, Mathematics - Quantum Algebra, 46L65 (Primary), 16W22 (Secondary), Discrete mathematics, Invariant polynomial, Invariant (mathematics), Compact group, Compact quantum group, Locally compact group, Orbit, Locally compact space, Relatively compact subspace, Mathematics
24 references, page 1 of 2

[1] T. Banica. Fusion rules for representations of compact quantum groups. Exposition. Math. 17 (1999), no. 4, 313-337.

[2] T. Banica. Representations of compact quantum groups and subfactors. J. Reine Angew. Math. 509 (1999), 167-198.

[3] E. B´edos, G. J. Murphy, and L. Tuset. Co-amenability of compact quantum groups. J. Geom. Phys. 40 (2001), no. 2, 130-153.

[4] F. P. Boca. Ergodic actions of compact matrix pseudogroups on C*-algebras. Recent advances in operator algebras, Orl`eans, 1992, Ast´erisque 232 (1995), 93-109.

[5] J. Cuntz. Simple C∗-algebras generated by isometries. Comm. Math. Phys. 57 (1977), no. 2, 173-185. [OpenAIRE]

[6] D. Goswami. Quantum symmetries and quantum isometries of compact metric spaces. arXiv: 0811.0095.

[7] R. Høegh-Krohn, M.B. Landstad and E. Størmer. Compact ergodic groups of automorphisms. Ann. of Math. 114 (1981), no.1, 75-86.

[8] T. Jech. Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.

[9] R. Kadison and J. Ringrose. Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997.

[10] B. Li. Introduction to Operator Algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 1992.

[11] H. Li. Compact quantum metric spaces and ergodic actions of compact quantum groups. J. Funct. Anal. 256 (2009), no. 10, 3368-3408.

[12] M. Maes and A. Van Daele. Notes on compact quantum groups. Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73-112.

[13] C. Pinzari. Growth rates of dimensional invariants of compact quantum groups and a theorem of Høegh-Krohn, Landstad and Størmer. arXiv:1101.4534. To appear in Proc. Amer. Math. Soc.

[14] P. Podle´s. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Comm. Math. Phys. 170 (1995), no.1, 1-20.

[15] P. Podle´s and E. Mu¨ller. Introduction to quantum groups. Rev. Math. Phys. 10 (1998), no. 4, 511-551.

24 references, page 1 of 2
Any information missing or wrong?Report an Issue