publication . Preprint . 2008

Lifting to cluster-tilting objects in higher cluster categories

Liu, Pin;
Open Access English
  • Published: 18 Oct 2008
Abstract
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
Subjects
arXiv: Mathematics::Representation TheoryMathematics::Category Theory
free text keywords: Mathematics - Representation Theory, Mathematics - Rings and Algebras, 18E30, 16D90
Download from
23 references, page 1 of 2

[1] A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells , Duke Math. J. 126 (2005), no. 1, 1-52

[2] K. Bongartz, Tilted algebras, Representations of algebras (Puebla,1980), Lecture Notes in Math. 903, Spinger, Berlin-New York, (1981), 26-38.

[3] A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618. [OpenAIRE]

[4] A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.

[5] A. B. Buan and H. Thomas, Coloured quiver mutation for higher cluster categories, preprint, arXiv:math/0809.0691v3.

[6] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364. [OpenAIRE]

[7] C. Fu and P. Liu, Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories, preprint, arXiv: 0712.2370v3, to appear in Comm. Algebra

[8] S. Fomin and N. Reading, Generalized cluster complexes and Coxter combinatorics, Int. Math. Res. Notices 44 (2005), 2709-2757.

[9] S. Fomin and A. Zelevinsky, Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529(electronic).

[10] S. Fomin and A. Zelevinsky, Cluster algebras II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.

[11] S. Fomin and A. Zelevinsky, Cluster algebras IV. Coefficients, Compos. Math. 143 (2007), 112-164.

[12] T. Holm and P. Jørgensen, On the relation between cluster and classical tilting, preprint, arXiv:math/0810.0411v1.

[13] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443.

[14] O. Iyama, Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), 22-50. [OpenAIRE]

[15] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Inv. Math. 172 (2008), no. 1, 117-168.

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue