Lifting to cluster-tilting objects in higher cluster categories

Preprint English OPEN
Liu, Pin;
  • Subject: 18E30, 16D90 | Mathematics - Rings and Algebras | Mathematics - Representation Theory
    arxiv: Mathematics::Representation Theory | Mathematics::Category Theory

In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
  • References (23)
    23 references, page 1 of 3

    [1] A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells , Duke Math. J. 126 (2005), no. 1, 1-52

    [2] K. Bongartz, Tilted algebras, Representations of algebras (Puebla,1980), Lecture Notes in Math. 903, Spinger, Berlin-New York, (1981), 26-38.

    [3] A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618.

    [4] A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.

    [5] A. B. Buan and H. Thomas, Coloured quiver mutation for higher cluster categories, preprint, arXiv:math/0809.0691v3.

    [6] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.

    [7] C. Fu and P. Liu, Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories, preprint, arXiv: 0712.2370v3, to appear in Comm. Algebra

    [8] S. Fomin and N. Reading, Generalized cluster complexes and Coxter combinatorics, Int. Math. Res. Notices 44 (2005), 2709-2757.

    [9] S. Fomin and A. Zelevinsky, Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529(electronic).

    [10] S. Fomin and A. Zelevinsky, Cluster algebras II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.

  • Metrics
Share - Bookmark