publication . Preprint . Article . 2013

Triviality and split of vector bundles on rationally connected varieties

Xuanyu Pan;
Open Access English
  • Published: 21 Oct 2013
Abstract
Comment: (submitted) 13 pages, 1 figure
Subjects
arXiv: Mathematics::Algebraic GeometryMathematics::Symplectic Geometry
free text keywords: Mathematics - Algebraic Geometry, Grassmannian, Mathematical analysis, Vector bundle, Chern class, Triviality, If and only if, Mathematics, Pure mathematics
Related Organizations
16 references, page 1 of 2

[Bal81] Edoardo Ballico. Uniform vector bundles on quadrics. Ann. Univ. Ferrara Sez. VII (N.S.), 27:135{146 (1982), 1981.

[dJHS11] A. J. de Jong, Xuhua He, and Jason Michael Starr. Families of rationally simply connected varieties over surfaces and torsors for semisimple groups. Publ. Math. Inst. Hautes Etudes Sci., (114):1{85, 2011.

[FK88] Eberhard Freitag and Reinhardt Kiehl. Etale cohomology and the Weil conjecture, volume 13 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. Translated from the German by Betty S. Waterhouse and William C. Waterhouse, With an historical introduction by J. A. Dieudonne.

[Ful98] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.

[Hwa01] Jun-Muk Hwang. Geometry of minimal rational curves on Fano manifolds. In School on Vanishing Theorems and E ective Results in Algebraic Geometry (Trieste, 2000), volume 6 of ICTP Lect. Notes, pages 335{393. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.

[IJS10] I.Biswas, J.Pedro, and P.Dos Santos. Triviality criterion for vector bundles over rationally connected varieties. Preprint, 2010.

[Kol08] Janos Kollar. Looking for rational curves on cubic hypersurfaces. In Higherdimensional geometry over nite elds, volume 16 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., pages 92{122. IOS, Amsterdam, 2008. Notes by Ulrich Derenthal.

[LM03] Joseph M. Landsberg and Laurent Manivel. On the projective geometry of rational homogeneous varieties. Comment. Math. Helv., 78(1):65{100, 2003.

[LMB00] Gerard Laumon and Laurent Moret-Bailly. Champs algebriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000.

[MOSC12] Roberto Mun~oz, Gianluca Occhetta, and Luis E. Sola Conde. Uniform vector bundles on fano manifolds and applications. J. Reine Angew. Math., 664:141{162, 2012.

[Mun~72] Roberto Mun~oz. Uniform vector bundles on Fano manifolds. 1972. Survey, KIAS, Seoul, April 6th, 2011.

[Ols07] Martin Olsson. Sheaves on Artin stacks. J. Reine Angew. Math., 603:55{112, 2007.

[Rei72] Miles Reid. The Complete Intersection of two or more Quadrics. 1972. Thesis (Ph.D.){ Trinity College, Cambridge.

[Sat76] Ei-ichi Sato. Uniform vector bundles on a projective space. J. Math. Soc. Japan, 28(1):123{132, 1976.

[VdV72] A. Van de Ven. On uniform vector bundles. Math. Ann., 195:245{248, 1972.

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2013

Triviality and split of vector bundles on rationally connected varieties

Xuanyu Pan;