publication . Preprint . 2016

Physical states in Quantum Einstein-Cartan Gravity

Cianfrani, Francesco;
Open Access English
  • Published: 05 May 2016
Abstract
The definition of physical states is the main technical issue of canonical approaches towards Quantum Gravity. In this work, we outline how those states can be found in Einstein-Cartan theory via a continuum limit and they are given by finite dimensional representations of the Lorentz group.
Subjects
free text keywords: General Relativity and Quantum Cosmology
Related Organizations
Download from
25 references, page 1 of 2

[1] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

[2] C. W. Misner, Phys. Rev. 186, 1319 (1969).

[3] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, J. Math. Phys. 36, 6456 (1995) doi:10.1063/1.531252 [gr-qc/9504018].

[4] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).

[5] J. F. Barbero G., Phys. Rev. D 51, 5507 (1995)

[6] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[7] J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

[8] T. Thiemann, Class. Quant. Grav. 15 (1998) 839 doi:10.1088/0264-9381/15/4/011 [gr-qc/9606089].

[9] J. Kowalski-Glikman and K. A. Meissner, Phys. Lett. B 376, 48 (1996) doi:10.1016/0370-2693(96)00268-7 [hep-th/9601062].

[10] A. Blaut and J. Kowalski-Glikman, Phys. Lett. B 406, 33 (1997) doi:10.1016/S0370-2693(97)00665-5 [gr-qc/9706076].

[11] V. K. Dobrev, G. Mack, I. T. Todorov, V. B. Petkova and S. G. Petrova, Rept. Math. Phys. 9, 219 (1976).

[12] S. Alexandrov and E. R. Livine, Phys. Rev. D 67, 044009 (2003) doi:10.1103/PhysRevD.67.044009 [gr-qc/0209105].

[13] S. Alexandrov, Phys. Rev. D 65, 024011 (2002) doi:10.1103/PhysRevD.65.024011 [gr-qc/0107071].

[14] J. Engle, E. Livine, R. Pereira and C. Rovelli, Nucl. Phys. B 799, 136 (2008)

[15] S. Alexandrov and P. Roche, Phys. Rept. 506, 41 (2011) doi:10.1016/j.physrep.2011.05.002 [arXiv:1009.4475 [gr-qc]].

25 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue