Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences

Preprint English OPEN
Sagan, Bruce; Savage, Carla;
(2009)
  • Subject: Mathematics - Combinatorics | 05A10 | 05A17

Let s and t be variables. Define polynomials {n} in s, t by {0}=0, {1}=1, and {n}=s{n-1}+t{n-2} for n >= 2. If s, t are integers then the corresponding sequence of integers is called a Lucas sequence. Define an analogue of the binomial coefficients by C{n,k}={n}!/({k}!{... View more
  • References (11)
    11 references, page 1 of 2

    [1] Andrews, G. E. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

    [2] Benjamin, A. T., and Plott, S. S. A combinatorial approach to Fibonomial coefficients. Fibonacci Quart. 46/47, 1 (2008/09), 7-9.

    [3] Benjamin, A. T., and Quinn, J. J. Proofs that really count, vol. 27 of The Dolciani Mathematical Expositions. Mathematical Association of America, Washington, DC, 2003. The art of combinatorial proof.

    [4] Bousquet-M´elou, M., and Eriksson, K. Lecture hall partitions. Ramanujan J. 1, 1 (1997), 101-111.

    [5] Bousquet-M´elou, M., and Eriksson, K. Lecture hall partitions II. Ramanujan J. 1, 2 (1997), 165-185.

    [6] Bousquet-M´elou, M., and Eriksson, K. A refinement of the lecture hall theorem. J. Combin. Theory. Ser. A 86, 1 (1999), 63-84.

    [7] Gessel, I., and Viennot, G. Binomial determinants, paths, and hook length formulae. Adv. in Math. 58, 3 (1985), 300-321.

    [8] Loehr, N., and Savage, C. Generalizing the combinatorics of binomial coefficients via ℓ -nomials. preprint.

    [9] Lucas, E. Theorie des Fonctions Numeriques Simplement Periodiques. Amer. J. Math. 1, 2 (1878), 184-196.

    [10] Lucas, E. Theorie des Fonctions Numeriques Simplement Periodiques. [Continued]. Amer. J. Math. 1, 3 (1878), 197-240.

  • Metrics
Share - Bookmark