publication . Article . Preprint . 2018

Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions

Wang, Qi; Xu, Yuanfeng; Lou, Rui; Liu, Zhonghao; Li, Man; Huang, Yaobo; Shen, Dawei; Weng, Hongming; Wang, Shancai; Lei, Hechang;
Open Access English
  • Published: 01 Sep 2018 Journal: Nature Communications, volume 9 (issn: 2041-1723, eissn: 2041-1723, Copyright policy)
  • Publisher: Nature Publishing Group UK
Abstract
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and ex...
Subjects
arxiv: Condensed Matter::Materials Science
free text keywords: Q, Condensed Matter - Strongly Correlated Electrons, Science, Condensed Matter - Materials Science, Article

4. Colin M. Hurd, The Hall Effect in Metals and Alloys,(Plenum Press, New York, 1972).

5. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82 1539

8. R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

9. T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).

10. M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).

12. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

13. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).

14. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

16. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).

17. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

18. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

19. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

20. Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 302, 93-95 (2003).

22. B. M. Ludbrook, B. J. Ruck, and S. Granville, Appl. Phys. Lett. 110, 062408 (2017).

Abstract
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and ex...
Subjects
arxiv: Condensed Matter::Materials Science
free text keywords: Q, Condensed Matter - Strongly Correlated Electrons, Science, Condensed Matter - Materials Science, Article

4. Colin M. Hurd, The Hall Effect in Metals and Alloys,(Plenum Press, New York, 1972).

5. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82 1539

8. R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

9. T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).

10. M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).

12. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

13. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).

14. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

16. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).

17. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

18. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

19. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

20. Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 302, 93-95 (2003).

22. B. M. Ludbrook, B. J. Ruck, and S. Granville, Appl. Phys. Lett. 110, 062408 (2017).

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2018

Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions

Wang, Qi; Xu, Yuanfeng; Lou, Rui; Liu, Zhonghao; Li, Man; Huang, Yaobo; Shen, Dawei; Weng, Hongming; Wang, Shancai; Lei, Hechang;