Share  Bookmark

 Download from


[1] A. L. BERTOZZI, J. A. CARRILLO AND T. LAURENT, Blowup in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22, no. 3, (2009): 683710.
[2] J. A. CARRILLO, M. FORNASIER, J. ROSADO AND G. TOSCANI, Asymptotic flocking dynamics for the kinetic CuckerSmale model, SIAM Journal on Mathematical Analysis, 42, no. 1, (2010): 218236.
[3] G.Q. CHEN AND H. LIU, Formation of δ shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM journal on mathematical analysis 34, no. 4, (2003): 925938.
[4] B. COCKBURN AND C.W. SHU, TVB RungeKutta Local projection discontinuous Galerkin finite element method for conservation law II: General framework, Mathematics of Computation, 52, (1989): 411435.
[5] F. CUCKER AND S. SMALE, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52, no. 5, (2007): 852862.
[6] G. DIMARCO AND L. PARESCHI, Numerical methods for kinetic equations, Acta Numerica, 23 (2014): 369520.
[7] S. GOTTLIEB, C.W. SHU AND E. TADMOR, Strong stability preserving highorder time discretization methods, SIAM Review, 43, (2001): 89112.
[8] S.Y. HA AND J.G. LIU, A simple proof of the CuckerSmale flocking dynamics and meanfield limit, Commun. Math. Sci., 7, no. 2, (2009): 297325.
[9] S.Y. HA AND E. TADMOR, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1, no. 3, (2008): 415435.
[10] R. MCLACHLAN AND G. QUISPEL, Splitting methods, Acta Numerica 11.0 (2002): 341434.