# A discontinuous Galerkin method on kinetic flocking models

- Published: 18 Sep 2014 Journal: Mathematical Models and Methods in Applied Sciences, volume 27, pages 1,199-1,221 (issn: 0218-2025, eissn: 1793-6314, Copyright policy)
- Publisher: World Scientific Pub Co Pte Lt

- Link this publication to...
- Cite this publication
Add to ORCID Please grant OpenAIRE to access and update your ORCID works.This research outcome is the result of merged research outcomes in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged research outcome.- add annotation

- 1
- 2

[1] A. L. BERTOZZI, J. A. CARRILLO AND T. LAURENT, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22, no. 3, (2009): 683-710.

[2] J. A. CARRILLO, M. FORNASIER, J. ROSADO AND G. TOSCANI, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM Journal on Mathematical Analysis, 42, no. 1, (2010): 218-236.

[3] G.-Q. CHEN AND H. LIU, Formation of δ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM journal on mathematical analysis 34, no. 4, (2003): 925-938.

[4] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta Local projection discontinuous Galerkin finite element method for conservation law II: General framework, Mathematics of Computation, 52, (1989): 411-435.

[5] F. CUCKER AND S. SMALE, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52, no. 5, (2007): 852-862.

[6] G. DIMARCO AND L. PARESCHI, Numerical methods for kinetic equations, Acta Numerica, 23 (2014): 369-520. [OpenAIRE]

[7] S. GOTTLIEB, C.-W. SHU AND E. TADMOR, Strong stability preserving high-order time discretization methods, SIAM Review, 43, (2001): 89-112.

[8] S.-Y. HA AND J.-G. LIU, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7, no. 2, (2009): 297-325.

[9] S.-Y. HA AND E. TADMOR, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1, no. 3, (2008): 415-435. [OpenAIRE]

[10] R. MCLACHLAN AND G. QUISPEL, Splitting methods, Acta Numerica 11.0 (2002): 341-434.

[11] S. MOTSCH AND E. TADMOR, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys, 144(5) (2011) 923-947.

[12] W.H. REED AND T.R. HILL, Triangular mesh methods for the Neutron transport equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM, 1973.

[13] C.-W. SHU, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer Berlin Heidelberg, 1998.

[14] E. TADMOR AND C. TAN, Critical thresholds in flocking hydrodynamics with nonlocal alignment, to appear at Phil. Trans. R. Soc. A.

[15] Y. YANG AND C.-W. SHU, Discontinuous Galerkin method for hyperbolic equations involving δ -singularities: negative-order norm error estimates and applications, Numerische Mathematik, (2013): 1-29.

- 1
- 2

- 1
- 2

[1] A. L. BERTOZZI, J. A. CARRILLO AND T. LAURENT, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22, no. 3, (2009): 683-710.

[2] J. A. CARRILLO, M. FORNASIER, J. ROSADO AND G. TOSCANI, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM Journal on Mathematical Analysis, 42, no. 1, (2010): 218-236.

[3] G.-Q. CHEN AND H. LIU, Formation of δ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM journal on mathematical analysis 34, no. 4, (2003): 925-938.

[4] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta Local projection discontinuous Galerkin finite element method for conservation law II: General framework, Mathematics of Computation, 52, (1989): 411-435.

[5] F. CUCKER AND S. SMALE, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52, no. 5, (2007): 852-862.

[6] G. DIMARCO AND L. PARESCHI, Numerical methods for kinetic equations, Acta Numerica, 23 (2014): 369-520. [OpenAIRE]

[7] S. GOTTLIEB, C.-W. SHU AND E. TADMOR, Strong stability preserving high-order time discretization methods, SIAM Review, 43, (2001): 89-112.

[8] S.-Y. HA AND J.-G. LIU, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7, no. 2, (2009): 297-325.

[9] S.-Y. HA AND E. TADMOR, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1, no. 3, (2008): 415-435. [OpenAIRE]

[10] R. MCLACHLAN AND G. QUISPEL, Splitting methods, Acta Numerica 11.0 (2002): 341-434.

[11] S. MOTSCH AND E. TADMOR, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys, 144(5) (2011) 923-947.

[12] W.H. REED AND T.R. HILL, Triangular mesh methods for the Neutron transport equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM, 1973.

[13] C.-W. SHU, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer Berlin Heidelberg, 1998.

[14] E. TADMOR AND C. TAN, Critical thresholds in flocking hydrodynamics with nonlocal alignment, to appear at Phil. Trans. R. Soc. A.

[15] Y. YANG AND C.-W. SHU, Discontinuous Galerkin method for hyperbolic equations involving δ -singularities: negative-order norm error estimates and applications, Numerische Mathematik, (2013): 1-29.

- 1
- 2